Pinning Synchronization Control for a Class of Dynamical Networks with Coupled Time-Varying Delays: An Interval-Observer-Based Approach


This paper is concerned with the pinning synchronization control issue for a class of discrete-time complex dynamical networks. By resorting to the interval observer approach, a novel pinning synchronization control strategy is adopted to control a small fraction of the network nodes with hope to reduce the implementation cost. By using the Lyapunov stability theorem, some synchronization criteria have been derived to ensure the desired synchronization performance. Finally, a numerical simulation is presented to illustrate the effectiveness and usefulness of the theoretical results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    N. Bruot, P. Cicuta, Realizing the physics of motile cilia synchronization with driven colloids. Annu. Rev. Condens. Matter Phys. 7, 323–348 (2016)

    Google Scholar 

  2. 2.

    G. Chen, Pinning control and controllability of complex dynamical networks. Int. J. Control Autom. Comput. 14(01), 1–9 (2017)

    Google Scholar 

  3. 3.

    R. Cheng, M. Peng, W. Yu, Pinning control of weighted general complex dynamical networks with time delay. Phys. A 413, 426–431 (2014)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    X. Chen, X.S. Chen, J.Q. Lu, J.W. Feng, Finite-time synchronization of networks via quantized intermittent pinning control. IEEE T. Cybern. 48(10), 3021–3027 (2017)

    Google Scholar 

  5. 5.

    D. Efimov, T. Raïssi, S. Chebotarev, A. Zolghadri, Interval state observer for nonlinear time varying systems. Automatica 49(1), 200–205 (2013)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    H. Ethabet, D. Rabehi, D. Efimove, T. Raïssi, Interval estimation for continuous-time switched linear systems. Automatica 90, 230–238 (2018)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    L.B. Good, S. Sabesan, S.T. Marsh, K. Tsakalis, Control of synchronization of brain dynamics leads to control of epileptic seizures in rodents. Int. J. Neural Syst. 19(3), 173–196 (2009)

    Google Scholar 

  8. 8.

    N.J. Gordon, D.J. Salmond, A.F.M. Smith, Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Pr. F 140(2), 107–113 (1993)

    Google Scholar 

  9. 9.

    Z. Guan, Z. Liu, G. Feng, Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control. Appl. Math. Comput. 57, 2182–2195 (2010)

    MathSciNet  Google Scholar 

  10. 10.

    Z.W. He, W. Xie, Control of non-linear switched systems with average dwell time: interval observer-based framework. IET Control Theory Appl. 10(1), 10–16 (2016)

    MathSciNet  Google Scholar 

  11. 11.

    F. Hong, S. Ge, Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknow dead-zones and gain signs. IEEE Trans. Syst. Man Cybern. 35(4), 849–854 (2005)

    Google Scholar 

  12. 12.

    C.D. Li, G. Feng, X.F. Liao, Stabilization of nonlinear systems via periodically intermittent control. IEEE Trans. Circuits Syst. II Express Briefs 54(11), 1019–1023 (2007)

    Google Scholar 

  13. 13.

    X. Li, X. Wang, G. Chen, Pinning a complex dynamical networks to its equilibrium. IEEE Trans. Circuits Syst. 51, 2074–2087 (2004)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    B. Liu, X.L. Wang, H.S. Su, H.T. Zhou, Y.T. Shi, Adaptive synchronization of complex dynamical networks with time-varying delays. Circuits Syst. Signal Process 33(4), 1173–1188 (2014)

    MathSciNet  Google Scholar 

  15. 15.

    P. Liu, H.B. Gu, Y. Kang, J.H. Lü, Global synchronization under PI/PD controllers in general complex networks with time-delay. Neurocomputing 366, 12–22 (2019)

    Google Scholar 

  16. 16.

    S. Liu, Z. Wang, Y. Chen, G. Wei, Protocol-Based unscented kalman fltering in the presence of stochastic uncertainties. IEEE Trans. Autom. Control 65(3), 1303–1309 (2020)

    MATH  Google Scholar 

  17. 17.

    S. Liu, Z. Wang, G. Wei, M. Li, Distributed set-membership fltering for multirate systems under the Round-Robin scheduling over sensor networks. IEEE Trans. Cybern. 50(5), 1910–1920 (2020)

    Google Scholar 

  18. 18.

    S. Liu, Z. Wang, L. Wang, G. Wei, On quantized H-infinity filtering for multi-rate systems under stochastic communication protocols: the finite-horizon case. Inform. Sci. 459, 211–223 (2018)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    X.W. Liu, T.P. Chen, Synchronization of linearly coupled networks with delays via aperiodically intermittent pinning control. IEEE T. Neur. Net. Lear. 26(10), 2396–2407 (2015)

    MathSciNet  Google Scholar 

  20. 20.

    Z. Liu, Z. Chen, Z. Yuan, Pinning control of weighted general complex dynamical networks with time delay. Phys. A 375, 345–354 (2007)

    Google Scholar 

  21. 21.

    N.N. Ma, Z.B. Liu, C. Liu, Synchronisation for complex dynamical networks with hybrid coupling time-varying delays via pinning adaptive control. Int. J. Syst. Sci. 50(8), 1661–1676 (2019)

    MathSciNet  Google Scholar 

  22. 22.

    R. Mainieri, J. Rehacek, Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82(15), 3042–3045 (1999)

    Google Scholar 

  23. 23.

    M. Nørgaard, N.K. Poulsen, O. Ravn, New developments in state estimation for nonlinear systems. Automatica 36(11), 1627–1638 (2000)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    M. Rosenblum, A. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76(11), 1804–1807 (1996)

    MATH  Google Scholar 

  25. 25.

    R. Roy, W. Murphy, D. Maier, Dynamical control of a chaotic laser: experimental stabilization of a globally coupled system. Phys. Rev. Lett. 68(9), 1259–1262 (1992)

    Google Scholar 

  26. 26.

    H. Shen, M.P. Xing, S.C. Huo, Z.G. Wu, Finite-time \(H_\infty \) asynchronous state estimation for discrete-time fuzzy Markov jump neural networks with uncertain measurements. Fuzzy Set. Syst. 356(1), 113–128 (2019)

    MATH  Google Scholar 

  27. 27.

    Z. Song, J. Zhai, Adaptive output-feedback control for switched stochastic uncertain nonlinear systems with time-varying delay. ISA T. 75, 15–24 (2018)

    Google Scholar 

  28. 28.

    Y. Tang, S. Leung, W. Wong, J. Fang, Impulsive pinning synchronization of stochastic discrete-time networks. Neurcomputing 73, 2132–2139 (2010)

    Google Scholar 

  29. 29.

    G. Wang, G.B. Giannakis, J. Chen, Robust and scalable power system state estimation via composite optimization. IEEE T. Smart Grid 10(6), 6137–6147 (2019)

    Google Scholar 

  30. 30.

    L.C. Wang, Z. Wang, Q.L. Han, G. Wei, Synchronization control for a class of discrete-time dynamical networks with packet dropouts: a coding-decoding-based approach. IEEE T. Cybern 48(8), 2437–2448 (2018)

    Google Scholar 

  31. 31.

    L.C. Wang, Z. Wang, G.L. Wei, F. Alsaadi, Observer-based consensus control for discrete-time multiagent systems with coding-decoding communication protocol. IEEE T. Cybern 49(12), 4335–4345 (2019)

    Google Scholar 

  32. 32.

    L.C. Wang, Z. Wang, G.L. Wei, F. Alsaadi, Finite-time state estimation for recurrent delayed neural networks with component-based event-triggering protocol. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1046–1057 (2018)

    Google Scholar 

  33. 33.

    L.C. Wang, Z. Wang, G.L. Wei, F. Alsaadi, Variance-constrained H-infinity state estimation for time-varying multi-rate systems with redundant channels: the finite-horizon case. Inform. Sci 501, 222–235 (2019)

    MathSciNet  Google Scholar 

  34. 34.

    X. Wang, G. Chen, Synchronization in small-world dynamical networks. Int. J. Bifurct. Chaos 12(1), 187–1922 (2002)

    Google Scholar 

  35. 35.

    X. Wang, G. Chen, Synchronization in scale-free dynamical networks: Robustness and fragility. IEEE T. Circuits-I 49(1), 54–62 (2002)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    X.F. Wang, H.S. Su, Pinning control of complex networked systems: a decade after and beyond. Annu. Rev. Control 38, 103–111 (2014)

    Google Scholar 

  37. 37.

    X. Wu, Y. Liu, J. Zhou, Pinning adaptive synchronization of general time-varying delayed and multi-linked networks with variable structures. Neurcomputing 147, 492–499 (2015)

    Google Scholar 

  38. 38.

    W.G. Xia, J.D. Cao, Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos 19(1), 013120 (2009)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    H. Xu, Y. Chen, K. Teo, Global exponential stability of impulsive discrete-time neural networks with time-varying delays. Appl. Math. Comput. 217, 537–544 (2010)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    W. Yu, G. Cheng, J. Lü, On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2006)

    MathSciNet  MATH  Google Scholar 

  41. 41.

    Z. Zheng, G. Hu, Generalized synchronization versus phase synchronization. Phys. Rev. E. 62(6), 7882–7885 (2000)

    Google Scholar 

  42. 42.

    J. Zhou, J. Lu, J. Lü, Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Automat. Contr. 51(4), 652–656 (2006)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    W.C. Zou, S. Peng, Z.R. Xiang, S. Yan, Finite-time consensus of second-order switched nonlinear multi-agent systems. IEEE Trans. Neural Netw. Learn. Syst. 31(5), 1757–1762 (2020)

    MathSciNet  Google Scholar 

  44. 44.

    W.C. Zou, S. Peng, Z.R. Xiang, S. Yan, Consensus tracking control of switched stochastic nonlinear multiagent systems via event-triggered strategy. IEEE Trans. Neural Netw. Learn. Syst. 31(3), 1036–1045 (2019)

    MathSciNet  Google Scholar 

Download references


This work was supported in part by the National Natural Science Foundation of China under Grant No. 61873169, the Natural Science Foundation of Shanghai [Grant No. 18ZR1427000], the China Postdoctoral Science Foundation [Grant No. 2019TQ0202] and the Shanghai Pujiang Program [Grant No. 19PJ1408100].

Author information



Corresponding author

Correspondence to Guoliang Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wei, G. & Wang, L. Pinning Synchronization Control for a Class of Dynamical Networks with Coupled Time-Varying Delays: An Interval-Observer-Based Approach. Circuits Syst Signal Process 40, 154–173 (2021).

Download citation


  • Complex dynamical networks
  • Pinning control
  • Interval observer
  • Synchronization control
  • Coupled time-varying delay