Sparse Mixed Norm Adaptive Filtering Technique

Abstract

In this paper, we would suggest a sparse adaptive filtering technique which is robust against Gaussian and non-Gaussian noises. To this goal, a linear combination of the least mean square and the least mean fourth loss functions has been considered as the fidelity term. Moreover, in order to promote the sparsity property of the underlying vector, we have added different sparsity-inducing penalty terms. To optimize the resultant cost function, the quasi-Newton scheme has been adopted which accelerates the convergence of the algorithm. The convergence of the proposed method has been proved analytically. Furthermore, the efficiency of the suggested scheme has been evaluated through extensive simulation scenarios which confirm the superiority of the proposed algorithm over the other state-of-the-art schemes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    A. Abtahi, M. Azghani, F. Marvasti, An adaptive iterative thresholding algorithm for distributed mimo radars. IEEE Trans. Aerosp. Electron. Syst. (2018). https://doi.org/10.1109/TAES.2018.2852400

    Article  Google Scholar 

  2. 2.

    M. Azghani, A. Ghorbani, F. Marvasti, Blind iterative nonlinear distortion compensation based on thresholding. IEEE Trans. Circuits Syst. II Express Briefs 64(7), 852–856 (2017)

    Article  Google Scholar 

  3. 3.

    M. Azghani, F. Marvasti, Sparse signal processing, in New Perspectives on Approximation and Sampling Theory (Springer, 2014), pp. 189–213

  4. 4.

    M. Azghani, F. Marvasti, L\(_2\)-regularized iterative weighted algorithm for inverse scattering. IEEE Trans. Antennas Propag. 64(6), 2293–2300 (2016). https://doi.org/10.1109/TAP.2016.2546385

    Article  MATH  Google Scholar 

  5. 5.

    B. Babadi, N. Kalouptsidis, V. Tarokh, Sparls: the sparse rls algorithm. IEEE Trans. Signal Process. 58(8), 4013–4025 (2010)

    MathSciNet  Article  Google Scholar 

  6. 6.

    E.J. Candes, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    MathSciNet  Article  Google Scholar 

  7. 7.

    S.H. Cho, S.D. Kim, K.Y. Jeon, Statistical convergence of the adaptive least mean fourth algorithm, in 3rd International Conference on Signal Processing, 1996, vol. 1 (IEEE, 1996), pp. 610–613

  8. 8.

    R.L. Das, M. Chakraborty, Improving the performance of the pnlms algorithm using l 1 norm regularization. IEEE/ACM Trans. Audio Speech Lang. Process. 24(7), 1280–1290 (2016)

    Article  Google Scholar 

  9. 9.

    D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    MathSciNet  Article  Google Scholar 

  10. 10.

    D.L. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans. Speech Audio Process. 8(5), 508–518 (2000)

    Article  Google Scholar 

  11. 11.

    A.T. Georgiadis, B. Mulgrew, A family of recursive algorithms for channel identification in alpha-stable noise, in Fifth Bayona Workshop on Emerging Technologies in Telecommunications (1999), pp. 153–157

  12. 12.

    Y. Gu, J. Jin, S. Mei, \( l\_ \{0\}\) norm constraint lms algorithm for sparse system identification. IEEE Signal Process. Lett. 16(9), 774–777 (2009)

    Article  Google Scholar 

  13. 13.

    G. Gui, S. Kumagai, A. Mehbodniya, F. Adachi, Two are better than one: adaptive sparse system identification using affine combination of two sparse adaptive filters, in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring) (IEEE, 2014), pp. 1–5

  14. 14.

    S.S. Haykin, Adaptive Filter Theory (Pearson Education, Noida, 2008)

    Google Scholar 

  15. 15.

    C.H. Lee, B.D. Rao, H. Garudadri, Sparsity promoting lms for adaptive feedback cancellation, in 2017 25th European Signal Processing Conference (EUSIPCO) (IEEE, 2017), pp. 226–230

  16. 16.

    Y. Li, Z. Jin, Y. Wang, R. Yang, A robust sparse adaptive filtering algorithm with a correntropy induced metric constraint for broadband multi-path channel estimation. Entropy 18, 380 (2016). https://doi.org/10.3390/e18100380

    Article  Google Scholar 

  17. 17.

    Y. Li, Y. Wang, F. Albu, Sparse channel estimation based on a reweighted least-mean mixed-norm adaptive filter algorithm, in 24th European Signal Processing Conference (EUSIPCO), 2016 (IEEE, 2016), pp. 2380–2384

  18. 18.

    H. Yazdanpanah, J.A. Apolinário, P.S.R. Diniz, M.V.S. Lima, l0-NORM FEATURE LMS ALGORITHMS. in 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (Anaheim, CA, USA, 2018), pp. 311–315. https://doi.org/10.1109/GlobalSIP.2018.8646465

  19. 19.

    M.V. Lima, T.N. Ferreira, W.A. Martins, M.O. Mendonça, P.S. Diniz, Performance evaluation of adaptive filters for sparse wireless channel estimation, in 2017 25th European Signal Processing Conference (EUSIPCO) (IEEE, 2017), pp. 2601–2065

  20. 20.

    W. Ma, H. Qu, J. Zhao, B. Chen, J.C. Principe, Sparsity aware minimum error entropy algorithms, in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2015), pp. 2179–2183

  21. 21.

    U.B. Mansoor, Q. Mayyala, M. Moinuddin, A. Zerguine, Quasi-Newton least-mean fourth adaptive algorithm, in 25th European Signal Processing Conference (EUSIPCO), 2017 (IEEE, 2017), pp. 2639–2643

  22. 22.

    K.B. Petersen, M.S. Pedersen et al., The matrix cookbook. Tech. Univ. Den. 7(15), 510 (2008)

    Google Scholar 

  23. 23.

    A.H. Sayed, Fundamentals of Adaptive Filtering (Wiley, London, 2003)

    Google Scholar 

  24. 24.

    M. Shao, C.L. Nikias, Signal processing with fractional lower order moments: stable processes and their applications. Proc. IEEE 81(7), 986–1010 (1993)

    Article  Google Scholar 

  25. 25.

    J. Wang, E.E. Kuruoglu, T. Zhou, Alpha-stable channel capacity. IEEE Commun. Lett. 15(10), 1107–1109 (2011)

    Article  Google Scholar 

  26. 26.

    Z. Yang, Y.R. Zheng, S.L. Grant, Proportionate affine projection sign algorithms for sparse system identification in impulsive interference, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2011), pp. 4068–4071

  27. 27.

    J. Yao, W. Deng, Z. Jiao, Rise-based adaptive control of hydraulic systems with asymptotic tracking. IEEE Trans. Autom. Sci. Eng. 14(3), 1524–1531 (2015)

    Article  Google Scholar 

  28. 28.

    J. Yao, Z. Jiao, D. Ma, L. Yan, High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties. IEEE/ASME Trans. Mechatron. 19(2), 633–641 (2013)

    Article  Google Scholar 

  29. 29.

    Y. Yin, J. Liu, W. Luo, L. Wu, S. Vazquez, J.I. Leon, L.G. Franquelo, Adaptive control for three-phase power converters with disturbance rejection performance. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2876322

    Article  Google Scholar 

  30. 30.

    J. Yoo, J. Shin, P. Park, An improved nlms algorithm in sparse systems against noisy input signals. IEEE Trans. Circuits Syst. II Express Briefs 62(3), 271–275 (2015)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Azghani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maleki, N., Azghani, M. Sparse Mixed Norm Adaptive Filtering Technique. Circuits Syst Signal Process (2020). https://doi.org/10.1007/s00034-020-01432-8

Download citation

Keywords

  • Adaptive filtering
  • Sparsity
  • Sparse adaptive filter