Exponential Synchronization of Markovian Jump Complex Dynamical Networks with Uncertain Transition Rates and Mode-Dependent Coupling Delay

Abstract

This paper aimed at investigating the exponential synchronization problem for a Markovian jump complex dynamical network through designing a state feedback controller. In this paper, it is supposed that both time delay and coefficient matrices switch between finite modes governed by a time-varying Markov process. The transition rate (TR) matrix of the Markov process is supposed to vary with time, and to be piecewise-constant. The time-varying transition rates are investigated under two cases: completely known TRs and partly unknown TRs, respectively. The synchronization problem of the proposed model is inspected by developing Lyapunov–Krasovski function with Markov-dependent Lyapunov matrices. The controller gain matrix for guaranteeing the synchronization problem is derived by using linear matrix inequalities. The resulted criteria depend on both delay size and the probability of the delay-taking value. Finally, a numerical example is provided to demonstrate the effectiveness of the theoretical results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    N. Akbari, A. Sadr, A. Kazemy, Exponential synchronization of a Markovian jump complex dynamic network with piecewise-constant transition rates and distributed delay. Trans. Inst. Meas. Control. 41(9), 2535–2544 (2019)

    Article  Google Scholar 

  2. 2.

    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    MathSciNet  Article  Google Scholar 

  3. 3.

    T. Botmart, W. Weera, Guaranteed cost control for exponential synchronization of cellular neural networks with mixed time-varying delays via hybrid feedback control. Abstr. Appl. Anal. 2013, 1–12 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    C.G. Cassandras, J. Lygeros, Stochastic Hybrid Systems: Research Issues and Areas. in Stochastic Hybrid Systems, (CRC Press, 2006), pp. 11–24

  5. 5.

    J.F. Chang, T.L. Liao, J.J. Yan, H.C. Chen, Implementation of synchronized chaotic Lü systems and its application in secure communication using PSO-based PI controller. Circuits Syst. Signal Process. 29(3), 527–538 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    J.L. Chen, C.H. Huang, Y.C. Du, C.H. Lin, Combining fractional-order edge detection and chaos synchronisation classifier for fingerprint identification. IET Image Process. 8(6), 354–362 (2014)

    Article  Google Scholar 

  7. 7.

    Y. Chen, L. Yang, A. Xue, Finite-time passivity of stochastic markov jump neural networks with random distributed delays and sensor nonlinearities. Circuits Syst. Signal Process. 38(6), 2422–2444 (2019)

    Article  Google Scholar 

  8. 8.

    C.J. Cheng, T.L. Liao, C.C. Hwang, Exponential synchronization of a class of chaotic neural networks. Chaos, Solitons Fractals 24(1), 197–206 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    F. Dorfler, F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM J. Control Optim. 50(3), 1616–1642 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    M. Faraji-Niri, M.R. Jahed-Motlagh, M. Barkhordari-Yazdi, Stabilization of active fault-tolerant control systems by uncertain nonhomogeneous markovian jump models. Complexity 21(S1), 318–329 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    M. Faraji-Niri, M.R. Jahed-Motlagh, M. Barkhordari-Yazdi, Stochastic stability and stabilization of a class of piecewise-homogeneous Markov jump linear systems with mixed uncertainties. Int. J. Robust Nonlinear Control 27(6), 894–914 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    G. Guo, Linear systems with medium-access constraint and Markov actuator assignment. IEEE Trans. Circuits Syst. I Regul. Pap. 57(11), 2999–3010 (2010)

    MathSciNet  Article  Google Scholar 

  13. 13.

    K. Gu, J. Chen, V.L. Kharitonov, Stability of Time-Delay Systems (Springer, Boston, 2003)

    Google Scholar 

  14. 14.

    E. Gyurkovics, K. Kiss, A. Kazemy, Non-fragile exponential synchronization of delayed complex dynamical networks with transmission delay via sampled-data control. J. Franklin Inst. 355(17), 8934–8956 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    S. He, F. Liu, Robust stabilization of stochastic Markovian jumping systems via proportional-integral control. Signal Process. 91(11), 2478–2486 (2011)

    MATH  Article  Google Scholar 

  16. 16.

    C. Huang, D.W. Ho, J. Lu, Partial-information-based distributed filtering in two-targets tracking sensor networks. IEEE Trans. Circuits Syst. I Regul. Pap. 59(4), 820–832 (2012)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Y. Ji, X. Liu, Unified synchronization criteria for hybrid switching-impulsive dynamical networks. Circuits Syst. Signal Process. 34(5), 1499–1517 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Z. Jia, X. Fu, G. Deng, K. Li, Group synchronization in complex dynamical networks with different types of oscillators and adaptive coupling schemes. Commun. nonlinear Sci. Numer. Simul. 18(10), 2752–2760 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    B. Kaviarasan, R. Sakthivel, Y. Lim, Synchronization of complex dynamical networks with uncertain inner coupling and successive delays based on passivity theory. Neurocomputing 186, 127–138 (2016)

    Article  Google Scholar 

  20. 20.

    A. Kazemy, Global synchronization of neural networks with hybrid coupling: a delay interval segmentation approach. Neural Comput. Appl. 30(2), 627–637 (2018)

    Article  Google Scholar 

  21. 21.

    A. Kazemy, J. Cao, Consecutive synchronization of a delayed complex dynamical network via distributed adaptive control approach. Int. J. Control Autom. 16(6), 2656–2664 (2018)

    Article  Google Scholar 

  22. 22.

    A. Kazemy, M. Farrokhi, Delay-dependent robust absolute stability criteria for uncertain multiple time-delayed Lur’e systems. Proc. Inst. Mech. Eng. Pt. I J. Syst. Contr. Eng. 227(3), 286–297 (2013)

    MATH  Google Scholar 

  23. 23.

    A. Kazemy, É. Gyurkovics, Sliding mode synchronization of a delayed complex dynamical network in the presence of uncertainties and external disturbances. Trans. Inst. Meas. Control. 41(9), 2623–2636 (2019)

    Article  Google Scholar 

  24. 24.

    S.H. Lee, M.J. Park, O.M. Kwon, R. Sakthivel, Advanced sampled-data synchronization control for complex dynamical networks with coupling time-varying delays. Inf. Sci. (Ny) 420, 454–465 (2017)

    Article  Google Scholar 

  25. 25.

    H. Li, D. Yue, Synchronization of Markovian jumping stochastic complex networks with distributed time delays and probabilistic interval discrete time-varying delays. J. Phys. A Math. Theor. 43(10), 105101 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    X. Li, D. Bi, X. Xie, Y. Xie, Multi-synchronization of stochastic coupled multi-stable neural networks with time-varying delay by impulsive control. IEEE Access 7, 15641–15653 (2019)

    Article  Google Scholar 

  27. 27.

    Z. Li, G. Chen, Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst. II Express Briefs 53(1), 28–33 (2006)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Z.X. Li, J.H. Park, Z.G. Wu, Synchronization of complex networks with nonhomogeneous Markov jump topology. Nonlinear Dyn. 74(1–2), 65–75 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    T. Liu, J. Zhao, D.J. Hill, Exponential synchronization of complex delayed dynamical networks with switching topology. IEEE Trans. Circuits Syst. I Regul. Pap. 57(11), 2967–2980 (2010)

    MathSciNet  Article  Google Scholar 

  30. 30.

    M. Long, H. Su, B. Liu, Group controllability of two-time-scale multi-agent networks. J. Franklin Inst. 355(13), 6045–6061 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    M. Long, H. Su, B. Liu, Second-order controllability of two-time-scale multi-agent systems. Appl. Math. Comput. 343, 299–313 (2019)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Q. Ma, S. Xu, Y. Zou, Stability and synchronization for Markovian jump neural networks with partly unknown transition probabilities. Neurocomputing 74(17), 3404–3411 (2011)

    Article  Google Scholar 

  33. 33.

    J. Mei, M. Jiang, W. Xu, B. Wang, Finite-time synchronization control of complex dynamical networks with time delay. Commun. Nonlinear Sci. Numer. Simul. 18(9), 2462–2478 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    G.A. Pagani, M. Aiello, The power grid as a complex network: a survey. Phys. A Stat. Mech. Appl. 392(11), 2688–2700 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    P. Park, J.W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1), 235–238 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    R. Rakkiyappan, V.P. Latha, K. Sivaranjani, Exponential \(H_{\infty }\) synchronization of lur’e complex dynamical networks using pinning sampled-data control. Circuits Syst. Signal Process. 36(10), 3958–3982 (2017)

    MATH  Article  Google Scholar 

  37. 37.

    R. Rakkiyappan, N. Sakthivel, Stochastic sampled-data control for exponential synchronization of Markovian jumping complex dynamical networks with mode-dependent time-varying coupling delay. Circuits Syst. Signal Process. 34(1), 153–183 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    P. Selvaraj, R. Sakthivel, C.K. Ahn, Observer-based synchronization of complex dynamical networks under actuator saturation and probabilistic faults. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1516–1526 (2018)

    Article  Google Scholar 

  39. 39.

    J.W. Shuai, D.M. Durand, Phase synchronization in two coupled chaotic neurons. Phys. Lett. A 264(4), 289–297 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    S.H. Strogatz, Exploring complex networks. Nature 410(6825), 268 (2001)

    MATH  Article  Google Scholar 

  41. 41.

    G. Wang, Q. Yin, Y. Shen, F. Jiang, \(H_\infty \) synchronization of directed complex dynamical networks with mixed time-delays and switching structures. Circuits Syst. Signal Process. 32(4), 1575–1593 (2013)

    MathSciNet  Article  Google Scholar 

  42. 42.

    J.A. Wang, C. Zeng, X. Wen, Synchronization stability and control for neutral complex dynamical network with interval time-varying coupling delay. Circuits Syst. Signal Process. 36(2), 559–576 (2017)

    MATH  Article  Google Scholar 

  43. 43.

    X. Wang, J.A. Fang, A. Dai, W. Cui, G. He, Mean square exponential synchronization for a class of Markovian switching complex networks under feedback control and M-matrix approach. Neurocomputing 144, 357–366 (2014)

    Article  Google Scholar 

  44. 44.

    X.F. Wang, Complex networks: topology, dynamics and synchronization. Int. J. Bifurc. chaos 12(5), 885–916 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Y.W. Wang, Y.W. Wei, X.K. Liu, N. Zhou, C.G. Cassandras, Optimal persistent monitoring using second-order agents with physical constraints. IEEE Trans. Automat. Contr. 64(8), 3239–3252 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Z. Wang, Y. Liu, X. Liu, \(H_{\infty }\) filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities. Automatica 44(5), 1268–1277 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Q. Wei, X.Y. Wang, X.P. Hu, Chaos synchronization in complex oscillators networks with time delay via adaptive complex feedback control. Circuits Syst. Signal Process. 33(8), 2427–2447 (2014)

    MathSciNet  Article  Google Scholar 

  48. 48.

    J. Xiao, Z. Zeng, Robust exponential stabilization of uncertain complex switched networks with time-varying delays. Circuits Syst. Signal Process 33(4), 1135–1151 (2014)

    MathSciNet  Article  Google Scholar 

  49. 49.

    T. Yang, L.O. Chua, Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 976–988 (1997)

    MathSciNet  Article  Google Scholar 

  50. 50.

    X. Yang, J. Lu, Finite-time synchronization of coupled networks with Markovian topology and impulsive effects. IEEE Trans. Automat. Contr. 61(8), 2256–2261 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    J.W. Yi, Y.W. Wang, J.W. Xiao, Y. Huang, Exponential synchronization of complex dynamical networks with Markovian jump parameters and stochastic delays and its application to multi-agent systems. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1175–1192 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Y. Yin, P. Shi, F. Liu, K.L. Teo, C.C. Lim, Robust filtering for nonlinear nonhomogeneous Markov jump systems by fuzzy approximation approach. IEEE Trans. Cybern. 45(9), 1706–1716 (2014)

    Article  Google Scholar 

  53. 53.

    D. Zhang, S.K. Nguang, L. Yu, Distributed control of large-scale networked control systems with communication constraints and topology switching. IEEE Trans. Syst. Man, Cybern. Syst. 47(7), 1746–1757 (2017)

    Article  Google Scholar 

  54. 54.

    L. Zhang, Y. Wang, Y. Huang, X. Chen, Delay-dependent synchronization for non-diffusively coupled time-varying complex dynamical networks. Appl. Math. Comput. 259, 510–522 (2015)

    MathSciNet  MATH  Google Scholar 

  55. 55.

    W. Zhang, J.A. Fang, Q. Miao, L. Chen, W. Zhu, Synchronization of Markovian jump genetic oscillators with nonidentical feedback delay. Neurocomputing 101, 347–353 (2013)

    Article  Google Scholar 

  56. 56.

    W. Zhang, C. Li, T. Huang, J. Qi, Global stability and synchronization of Markovian switching neural networks with stochastic perturbation and impulsive delay. Circuits Syst. Signal Process. 34(8), 2457–2474 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    J. Zhao, D.J. Hill, T. Liu, Synchronization of complex dynamical networks with switching topology: a switched system point of view. Automatica 45(11), 2502–2511 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    Y.P. Zhao, P. He, H. Saberi Nik, J. Ren, Robust adaptive synchronization of uncertain complex networks with multiple time-varying coupled delays. Complexity 20(6), 62–73 (2015)

    MathSciNet  Article  Google Scholar 

  59. 59.

    J. Zhou, H. Dong, J. Feng, Event-triggered communication for synchronization of Markovian jump delayed complex networks with partially unknown transition rates. Appl. Math. Comput. 293, 617–629 (2017)

    MathSciNet  MATH  Google Scholar 

  60. 60.

    W. Zhou, T. Wang, Q.C. Zhong, J.A. Fang, Proportional-delay adaptive control for global synchronization of complex networks with time-delay and switching outer-coupling matrices. Int. J. Robust Nonlinear Control 23(5), 548–561 (2013)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Sadr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akbari, N., Sadr, A. & Kazemy, A. Exponential Synchronization of Markovian Jump Complex Dynamical Networks with Uncertain Transition Rates and Mode-Dependent Coupling Delay. Circuits Syst Signal Process 39, 3875–3906 (2020). https://doi.org/10.1007/s00034-020-01346-5

Download citation

Keywords

  • Exponential synchronization
  • Complex dynamical network
  • Lyapunov–Krasovski theory
  • Piecewise-homogeneous Markovian jump parameters
  • Partly unknown transition rates
  • Mode-dependent time-varying coupling delay