Skip to main content
Log in

A Wideband High Linearity and Low-Noise CMOS Active Mixer Using the Derivative Superposition and Noise Cancellation Techniques

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Using the derivative superposition and noise cancellation techniques, a high linearity, enhanced conversion gain, and low noise figure (NF) CMOS active mixer is presented for wideband applications. The third-order input intercept point (IIP3) of the proposed mixer is improved by cancelling the intrinsic second-order derivative transconductance (g m ) of the main transistor. This is achieved by using an auxiliary transistor which is biased in the weak inversion region to create g m with the same amplitude and opposite sign relative to the main transistor. A linear path consisting of two parallel transistors is utilized to cancel the thermal noise of the input transistors. A constant transconductance (Gm) bias circuit is employed to achieve robust performance against process, voltage and temperature variations. Detailed analysis of the proposed mixer is presented, and extensive simulation results are provided to evaluate the efficiency of the utilized techniques. The simulated mixer operates from 500 MHz to 3.1 GHz RF input frequency. Post-layout circuit-level simulation results using a 90-nm RF CMOS process with Spectre-RF reveal that the IIP3 and conversion gain of the proposed mixer are improved about 6.1 dB and 6.2 dB, respectively, compared to the conventional CMOS active mixer. Also, the NF of the proposed mixer is decreased about 2 dB. The simulated S11 is less than − 12 dB in whole RF range. It consumes 13.9 mW from a single 1.1 V power supply which is approximately 60% more than that of the conventional active mixer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. A. Amirabadi, M. Chehelcheraghi, M. Kamarei, High IIP3 and low-noise CMOS mixer using non-linear feedback technique. Circuits Syst. Signal Proc. 30(4), 721–739 (2011)

    Article  Google Scholar 

  2. M. Asghari, M. Yavari, Using interaction between two nonlinear systems to improve IIP3 in active mixers. Electron. Lett. 50(2), 76–77 (2014)

    Article  Google Scholar 

  3. M. Asghari, M. Yavari, Using the gate–bulk interaction and a fundamental current injection to attenuate IM3 and IM2 currents in RF transconductors. IEEE Trans. Very Large Scale Integr. VLSI Syst. 1, 223–232 (2016)

    Article  Google Scholar 

  4. M. Asghari, M. Yavari, An IIP3 enhancement technique for CMOS active mixers with a source-degenerated transconductance stage. Microelectron. J. 50, 44–49 (2016)

    Article  Google Scholar 

  5. M. Beigizadeh, A. Nabavi, Design of a high gain and highly linear common-gate UWB mixer in K-band. Analog Integr. Circuits Signal Process. 78(2), 501–509 (2014)

    Article  Google Scholar 

  6. S.C. Blaakmeer, E.A. Klumperink, D.M. Leenaerts, B. Nauta, The Blixer, a wideband balun-LNA-I/Q-mixer topology. IEEE J. Solid State Circuits 43(12), 2706–2715 (2008)

    Article  Google Scholar 

  7. T.C. Carusone, D.A. Johns, K.W. Martin, Analog Integrated Circuit Design, 2nd edn. (Wiley, New York, 2012)

    Google Scholar 

  8. M.M. Esmael, M. Mobarak, M.A. Abdalla, 9–16 GHz high-linearity I/Q active mixer in 0.13-μm CMOS, in National Radio Science Conference (NRSC), Egypt (2016), pp. 362–367

  9. B. Guo, H. Wang, G. Yang, A wideband merged CMOS active mixer exploiting noise cancellation and linearity enhancement. IEEE Trans. Microw. Theory Tech. 62(9), 2084–2091 (2014)

    Article  Google Scholar 

  10. N. Gupta, A.A. Kumar, A. Dutta, S.G. Singh, Design of subthreshold wide band down conversion mixer, in IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) (2013), pp. 200–203

  11. S.K. Hampel, O. Schmitz, M. Tiebout, I. Rolfes, Inductorless low-voltage and low-power wideband mixer for multistandard receivers. IEEE Trans. Microw. Theory Tech. 58(5), 1384–1390 (2010)

    Article  Google Scholar 

  12. H.-G. Han, T.-W. Kim, +34 dBm IIP3, 0.4–1 GHz common-drain stage with its high frequency analysis. Electron. Lett. 48(17), 1064–1065 (2012)

    Article  Google Scholar 

  13. Y.-D. Jiang, R.-X. Zhang, C.-Q. Shi, Z.-S. Lai, A 76-dBm IIP2 down-conversion mixer for TD-SCDMA/RFID applications. Analog Integr. Circuits Signal Process. 72(2), 129–139 (2012)

    Article  Google Scholar 

  14. T.-H. Jin, T.-W. Kim, A 5.5-mW +9.4-dBm IIP3 1.8-dB NF CMOS LNA employing multiple gated transistors with capacitance desensitization. IEEE Trans. Microw. Theory Tech. 58(10), 2529–2537 (2010)

    Article  Google Scholar 

  15. Y.M. Kim et al., A 0.6-V +4 dBm IIP3 LC folded cascode CMOS LNA with gm linearization. IEEE Trans. Circuits Syst. II Exp. Briefs 60(3), 122–126 (2013)

    Article  Google Scholar 

  16. D. Lee, M. Lee, Low flicker noise, odd-phase master LO active mixer using a low switching frequency scheme. IEEE J. Solid State Circuits 50(6), 2281–2293 (2015)

    Article  Google Scholar 

  17. K. Lee, I. Nam, I. Kwon, J. Gil, K. Han, S. Park, B.-I. Seo, The impact of semiconductor technology scaling on CMOS RF and digital circuits for wireless application. IEEE Trans. Electron Devices 52(7), 1415–1422 (2005)

    Article  Google Scholar 

  18. S. Lee, J. Bergervoet, K. Harish, D. Leenaerts, R. Roovers, R. van de Beek et al., A broadband receive chain in 65 nm CMOS, in International Solid-State Circuits Conference Digest of Technical Papers (2007), pp. 418–419

  19. Y.-S. Lin, M.-H. Kao, H.-R. Pan, K.-S. Lan, A 90–96 GHz CMOS down-conversion mixer with high conversion gain and excellent LO–RF isolation. Analog Integr. Circuits Signal Process. 93(1), 49–59 (2017)

    Article  Google Scholar 

  20. B. Liu, F. Fan, H. Zhang, C. Zeng, A wideband down conversion mixer with dual cross-coupled loops for software defined radio, in IEEE International Symposium on Circuits and Systems (ISCAS) (2015), pp. 990–993

  21. S. Lou, H.C. Luong, A linearization technique for RF receiver front-end using second-order intermodulation injection. IEEE J. Solid State Circuits 43(11), 2404–2412 (2008)

    Article  Google Scholar 

  22. L. Ma, Z. Wang, J. Xu, A 1-V current-reused wideband current-mirror mixer in 180-nm CMOS with high IIP2. Circuits Syst. Signal Process. 36(5), 1806–1817 (2017)

    Article  Google Scholar 

  23. D. Manstretta, M. Brandolini, F. Svelto, Second-order intermodulation mechanisms in CMOS downconverters. IEEE J. Solid State Circuits 38(3), 394–406 (2003)

    Article  Google Scholar 

  24. B. Mazhabjafari, M. Yavari, A UWB CMOS low-noise amplifier with noise reduction and linearity improvement techniques. Microelectron. J. 46(2), 198–206 (2015)

    Article  Google Scholar 

  25. M.M. Mohsenpour, C.E. Saavedra, Highly linear reconfigurable mixer designed for environment-aware receiver, in IEEE International Symposium on Circuits and Systems (ISCAS) (2017), pp. 1–4

  26. M. Mollaalipour, H. Miar-Naimi, An improved high linearity active CMOS mixer: design and Volterra series analysis. IEEE Trans. Circuits Syst. I Regul. Papers 60(8), 2092–2103 (2013)

    Article  MathSciNet  Google Scholar 

  27. D.-H. Na, T.-W. Kim, A 1.2 V, 0.87–3.7 GHz wideband low-noise mixer using a current mirror for multiband application. IEEE Microw. Wirel. Compon. Lett. 22(2), 91–93 (2012)

    Article  Google Scholar 

  28. J. Park, C.H. Lee, B.S. Kim, J. Laskar, Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers. IEEE Trans. Microw. Theory Tech. 54(12), 4372–4380 (2006)

    Article  Google Scholar 

  29. M. Pasca, V. Chironi, S. D’Amico, M. De Matteis, A. Baschirotto, A 12 dBm IIP3 reconfigurable mixer for high/low band IR-UWB receivers, in IEEE Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2013), pp. 81–84

  30. F. Plessas, G. Souliotis, R. Makri, A 76–84 GHz CMOS 4x subharmonic mixer with internal phase correction. IEEE Trans. Circuits Syst. I Regul. Papers 65(7), 2083–2096 (2018)

    Article  Google Scholar 

  31. P.Z. Rao, T.Y. Chang, C.P. Liang, S.J. Chung, A wideband CMOS mixer with feedforward compensated differential transconductor, in IEEE International Symposium on Circuits and Systems (2007), pp. 3892–3895

  32. P.Z. Rao, T.Y. Chang, C.P. Liang, S.J. Chung, An ultra-wideband high-linearity CMOS mixer with new wideband active baluns. IEEE Trans. Microw. Theory Tech. 57(9), 2184–2192 (2009)

    Article  Google Scholar 

  33. B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill, New York, 2001)

    Google Scholar 

  34. B. Razavi, RF Microelectronics (Prentice Hall, London, 2012)

    Google Scholar 

  35. P. Solati, M. Yavari, A wide-band CMOS active mixer with linearity improvement technique, in Iranian Conference on Electrical Engineering (ICEE) (2017), pp. 271–275

  36. M.T. Terrovitis, R.G. Meyer, Intermodulation distortion in current-commutating CMOS mixers. IEEE J. Solid State Circuits 35(10), 1461–1473 (2000)

    Article  Google Scholar 

  37. P. Upadhyaya, M. Rajashekharaiah, D. Heo, A 5.6-GHz CMOS doubly balanced sub-harmonic mixer for direct conversion-zero IF receiver, in IEEE Microelectronics and Electron Devices Workshop (2004), pp. 129–130

  38. Q. Wan, D. Xu, H. Zho, J. Dong, A complementary current-mirror-based bulk-driven down-conversion mixer for wideband applications. Circuits Syst. Signal Process. 37(9), 3671–3684 (2018)

    Article  Google Scholar 

  39. H. Zhang, E. Sánchez-Sinencio, Linearization techniques for CMOS low noise amplifiers: a tutorial. IEEE Trans. Circuits Syst. I Regul. Paper 58(1), 22–36 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yavari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solati, P., Yavari, M. A Wideband High Linearity and Low-Noise CMOS Active Mixer Using the Derivative Superposition and Noise Cancellation Techniques. Circuits Syst Signal Process 38, 2910–2930 (2019). https://doi.org/10.1007/s00034-019-01023-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01023-2

Keywords

Navigation