Skip to main content
Log in

Recursive Median and Mean Partitioned One-to-One Gray Level Mapping Transformations for Image Enhancement

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents two novel recursive partitioned one-to-one gray level mapping (RPOGM) algorithms, viz., recursive median partitioned one-to-one gray level mapping (RMDPOGM) and recursive mean partitioned one-to-one gray level mapping (RMPOGM). The proposed RPOGM methods serve multiple objectives and address the issues such as (i) intensity saturation, (ii) intensity compression and (iii) ensure uniform degree of enhancement of all gray levels and thus result in overall enhancement of the processed image. In RMPOGM, image/histogram is partitioned recursively, (recursion level restricted to two, resulting in four sub-histograms) based on mean. RMDPOGM is similar to RMPOGM except histogram partitioning is done based on median. In RPOGM methods, image-dependent weights for each sub-histogram are calculated separately. Later, these weights are used for transformation. Finally, all the transformed sub-images are combined to get the processed image. As the images processed by these methods are not having any loss of details, it results in retaining the structural details of the objects and hence preserves fine contours even after enhancement. This results in low gradient magnitude similarity deviation (GMSD) between the processed image and input image. Experimental results show the superiority of the proposed methods over the state-of-the-art histogram equalization methods in terms of preserving entropy, preserving mean brightness and having low GMSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Abdullah-Al-Wadud, M.H. Kabir, M.A. Dewan, O. Chae, A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)

    Article  Google Scholar 

  2. P.B. Aquino-Morínigo, F.R. Lugo-Solís, D.P. Pinto-Roa, H.L. Ayala, J.L. Noguera, Bi-histogram equalization using two plateau limits. SIViP 11(5), 857–864 (2017)

    Article  Google Scholar 

  3. S.D. Chen, A.R. Ramli, Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 49(4), 1310–1319 (2003)

    Article  Google Scholar 

  4. S.D. Chen, A.R. Ramli, Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 49(4), 1301–1309 (2003)

    Article  Google Scholar 

  5. R.C. Gonzalez: Digital image processing: Pearson Education India. (2009)

  6. M. Hanmandlu, O.P. Verma, N.K. Kumar, M. Kulkarni, A novel optimal fuzzy system for color image enhancement using bacterial foraging. IEEE Trans. Instrum. Meas. 58(8), 2867–2879 (2009)

    Article  Google Scholar 

  7. H. Ibrahim, N.S. Kong, Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758 (2007)

    Article  Google Scholar 

  8. Y.T. Kim, Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  9. M. Kim, M.G. Chung, Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement. IEEE Trans. Consum. Electron. 54(3), 1389–1397 (2008)

    Article  Google Scholar 

  10. S.H. Lim, N.A.M. Isa, C.H. Ooi, K.K.V.A. Toh, New histogram equalization method for digital image enhancement and brightness preservation. SIViP 9(3), 675–689 (2015)

    Article  Google Scholar 

  11. C.H. Ooi, N.A.M. Isa, Quadrants dynamic histogram equalization for contrast enhancement. IEEE Trans. Consum. Electron. 56(4), 2552–2559 (2010)

    Article  Google Scholar 

  12. C.H. Ooi, N.S. Kong, H. Ibrahim, Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans. Consum. Electron. 55(4), 2072–2080 (2009)

    Article  Google Scholar 

  13. E. Reddy, R. Reddy: Dynamic clipped histogram equalization technique for enhancing low contrast images. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 1–26 (2018)

  14. K. Santhi, R.S.D. Wahida-Banu, Adaptive contrast enhancement using modified histogram equalization. Optik Int. J. Light Electron. Opt. 126(19), 1809–1814 (2015)

    Article  Google Scholar 

  15. K.S. Sim, C.P. Tso, Y.Y. Tan, Recursive sub-image histogram equalization applied to gray scale images. Pattern Recogn. Lett. 28(10), 1209–1221 (2007)

    Article  Google Scholar 

  16. K. Singh, R. Kapoor, Image enhancement via median-mean based sub-image-clipped histogram equalization. Optik Int. J. Light Electron. Opt. 125(17), 4646–4651 (2014)

    Article  Google Scholar 

  17. K. Singh, R. Kapoor, Image enhancement using exposure based sub image histogram equalization. Pattern Recogn. Lett. 36, 10–14 (2014)

    Article  Google Scholar 

  18. K. Singh, R. Kapoor, S.K. Sinha, Enhancement of low exposure images via recursive histogram equalization algorithms. Optik Int. J. Light Electron. Opt. 126(20), 2619–2625 (2015)

    Article  Google Scholar 

  19. J.R. Tang, N.A.M. Isa, Adaptive image enhancement based on bi-histogram equalization with a clipping limit. Comput. Electr. Eng. 40(8), 86–103 (2014)

    Article  Google Scholar 

  20. Q. Wang, R.K. Ward, Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Trans. Consum. Electron. 53(2), 757–764 (2007)

    Article  Google Scholar 

  21. Y. Wang, Q. Chen, B. Zhang, Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45(1), 68–75 (1999)

    Article  Google Scholar 

  22. W. Xue, L. Zhang, X. Mou, A.C. Bovik, Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 684–695 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eswar Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, M.E., Reddy, G.R. Recursive Median and Mean Partitioned One-to-One Gray Level Mapping Transformations for Image Enhancement. Circuits Syst Signal Process 38, 3227–3250 (2019). https://doi.org/10.1007/s00034-018-1013-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-1013-3

Keywords

Navigation