Skip to main content
Log in

Nonnegative Matrix Factorization with Fixed L2-Norm Constraint

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Nonnegative matrix factorization (NMF) is a very attractive scheme in learning data representation, and constrained NMF further improves its ability. In this paper, we focus on the L2-norm constraint due to its wide applications in face recognition, hyperspectral unmixing, and so on. A new algorithm of NMF with fixed L2-norm constraint is proposed by using the Lagrange multiplier scheme. In our method, we derive the involved Lagrange multiplier and learning rate which are hard to tune. As a result, our method can preserve the constraint exactly during the iteration. Simulations in both computer-generated data and real-world data show the performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. AT&T Laboratories Cambridge, ORL Face Database. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html (2002)

  2. M.W. Berry, M. Brown, A.N. Langvill, V.P. Pauca, R.J. Plemmons, Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52(1), 155–173 (2007)

    Article  MathSciNet  Google Scholar 

  3. N. Bertin, R. Badeau, E. Vincent, Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription. IEEE Trans. Audio Speech Lang. Process. 18(3), 538–549 (2010)

    Article  Google Scholar 

  4. C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix t-factorizations for clustering, in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 126–135 (2006)

  5. N. Gillis, F. Glineur, A multilevel approach for nonnegative matrix factorization. J. Comput. Appl. Math. 236(7), 1708–1723 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Gersho, R.M. Gray, Vector quantization and signal compression, in Springer International, vol. 159(1), pp. 407–485 (1992)

  7. F. Gianfelici, C. Turchetti, P. Crippa, A non-probabilistic recognizer of stochastic signals based on KLT. Signal Process. 89(4), 422–437 (2009)

    Article  MATH  Google Scholar 

  8. D. Goldfarb, Z. Wen, W. Yin, A curvilinear search method for the p-harmonic flow on spheres. SIAM J. Imaging Sci. 2(1), 84–109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. P.O. Hoyer, Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5(1), 1457–469 (2004)

    MathSciNet  MATH  Google Scholar 

  10. I. Jolliffe, Principle Component Analysis, 2nd edn. (Springer, New York, 2004)

    Google Scholar 

  11. M. Lyons, J. Budynek, S. Akamatsu, Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. 21(12), 1357–1362 (1999)

    Article  Google Scholar 

  12. S. Li, X. Hou, H. Zhang, Q. Cheng, Learning spatially localized, parts-based representation, in Computer Vision and Pattern Recognition, pp. 207–212 (2001)

  13. P. Luo, J. Peng, J. Fan, P. Luo, J. Peng, l(2,1) norm and Hessian regularized non-negative matrix factorization with discriminability for data representation. Appl. Sci. 7(10), 1–14 (2017)

    Article  Google Scholar 

  14. D.D. Lee, H.S. Seung, Algorithms for nonnegative matrix factorization. Adv. Neural Inf. Process. Syst. 13(6), 556–562 (2000)

    Google Scholar 

  15. D.D. Lee, H.S. Seung, Learning the parts of objects by nonnegative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  MATH  Google Scholar 

  16. Z. Li, J. Tang, X. He, Robust structured nonnegative matrix factorization for image representation. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1947–1960 (2018)

    Article  MathSciNet  Google Scholar 

  17. MIT Center For Biological and Computation Learning, CBCL Face Database #1. http://cbcl.mit.edu/software-datasets/FaceData2.html (2005)

  18. Y. Meng, R. Shang, L. Jiao, W. Zhang, Y. Yuan, S. Yang, Feature selection based dual-graph sparse non-negative matrix factorization for local discriminative clustering. Neurocomputing 290, 87–99 (2018)

    Article  Google Scholar 

  19. F. Shahnaz, M.W. Berry, V.P. Pauca, R.J. Plemmons, Document clustering using nonnegative matrix factorization. Inf. Process. Manag. 42(2), 373–386 (2006)

    Article  MATH  Google Scholar 

  20. L.A. Vese, S.J. Osher, Numerical methods for p-harmonic flows and applications to image processing. SIAM J. Numer. Anal. 40(6), 2085–2104 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Wang, H. Lu, On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization. Signal Process. 93(6), 1608–1623 (2013)

    Article  Google Scholar 

  22. D. Wang, J. Liu, Y. Gao, J. Yu, C. Zheng, An NMF-L2, L1-norm constraint method for characteristic gene selection. Plos One 11(7), 1–12 (2016)

    Google Scholar 

  23. Z. Wen, W. Yin, A feasible method for optimization with orthogonality constraints. Math. Program. 142(1–2), 394–434 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Y. Xu, Z. Zhong, J. Yang, J. You, D. Zhang, A new discriminative sparse representation method for robust face recognition via l2 regularization. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2233–2242 (2017)

    Article  MathSciNet  Google Scholar 

  25. N. Yuvaraj, P. Vivekanandan, An efficient SVM based tumor classification with symmetry non-negative matrix factorization using gene expression data, in International Conference on Information Communication and Embedded Systems, pp. 761–768 (2013)

  26. Z. Yang, Y. Xiang, K. Xie, Y. Lai, Adaptive method for nonsmooth nonnegative matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 28(4), 948–960 (2017)

    Article  Google Scholar 

  27. Z. Yang, G. Zhou, S. Xie, S. Ding, J. Yang, J. Zhang, Blind spectral unmixing based on sparse nonnegative matrix factorization. IEEE Trans. Image Process. 20(4), 1112–1125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. Yang, Y. Zhang, Y. Xiang, W. Yan, S. Xie, Non-negative matrix factorization with dual constraints for image clustering. IEEE Trans. Syst. Man Cybern. Syst. https://doi.org/10.1109/TSMC.2018.2820084 (to appear)

  29. Z. Zhang, S. Liao, H. Zhang, S. Wang, Y. Wang, Bilateral filter regularized L2 sparse nonnegative matrix factorization for hyperspectral unmixing. Remote Sens. 10(6), 1–22 (2018)

    Article  Google Scholar 

  30. G. Zhou, Z. Yang, S. Xie, J. Yang, Online blind source separation using incremental nonnegative matrix factorization with volume constraint. IEEE Trans. Neural Netw. 22(4), 550–60 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naiyao Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grant 61722304, the Pearl River S&T Nova Program of Guangzhou under Grant 201610010196, and the Guangdong Natural Science Funds under Grants 2014A030306037, 2018A030313306.

Appendix

Appendix

1.1 The Proof of Lemma 2

Proof

Part (1): Since \(\mathbf{I }+\frac{\tau }{2}\mathbf{A }=\mathbf{I }+\frac{\tau }{2}\mathbf{MN }^\mathrm{T}\), we apply the SMW formula:

$$\begin{aligned} \begin{aligned} (\mathbf{B }+\alpha \mathbf{MN }^\mathrm{T})^{-1}=\mathbf{B }^{-1}-\alpha \mathbf{B }^{-1}\mathbf{M }(\mathbf{I } +\alpha \mathbf{N }^\mathrm{T}\mathbf{B }^{-1}\mathbf{M })^{-1}\mathbf{N }^\mathrm{T}\mathbf{B }^{-1} \end{aligned} \end{aligned}$$
(33)

In the case that \(\mathbf{B } = \mathbf{I }\), it obtains that \((\mathbf{I }+\frac{\tau }{2}\mathbf{A })^{-1}=\mathbf{I }-\frac{\tau }{2}\mathbf{M }(\mathbf{I }+\frac{\tau }{2}\mathbf{N }^\mathrm{T}\mathbf{M })^{-1}\mathbf{N }^\mathrm{T}\). As \(\mathbf{I }-\frac{\tau }{2}\mathbf{A }=\mathbf{I }-\frac{\tau }{2}\mathbf{MN }^\mathrm{T}\), we have

$$\begin{aligned} y(\tau )= & {} x-\frac{\tau }{2}\mathbf{M }\left( \left( \mathbf{I }+ \frac{\tau }{2}\mathbf{N }^\mathrm{T}\mathbf{M }\right) ^{-1} \left( \mathbf{I }-\frac{\tau }{2}\mathbf{N }^\mathrm{T}\mathbf{M }\right) +\mathbf{I }\right) \mathbf{N }^\mathrm{T}x \\= & {} x-\tau \mathbf{M } \left( \mathbf{I }+\frac{\tau }{2}\mathbf{N }^\mathrm{T} \mathbf{M }\right) ^{-1}\mathbf{N }^\mathrm{T}x \end{aligned}$$

Part (2): When \(\mathbf{A }=\mathbf{a }\mathbf{x }^\mathrm{T}-\mathbf{x }\mathbf{a }^\mathrm{T}\), then \(\mathbf{M }=[\mathbf{a },\mathbf{x }]\) and \(\mathbf{N }=[{\mathbf{a }},-\mathbf{a }]\), let \(\mathbf{S }=\mathbf{I }+\frac{\tau }{2}\mathbf{N }^\mathrm{T}\mathbf{M }\),

$$\begin{aligned} \mathbf{S }= & {} \left[ \begin{array}{cc} 1 &{}\quad 0 \\ 0 &{}\quad 1 \end{array} \right] -\frac{\tau }{2} \left[ \begin{array}{cc} \mathbf{x }^\mathrm{T}\mathbf{a } &{}\quad \mathbf{x }^\mathrm{T}\mathbf{x } \\ -\mathbf{a }^\mathrm{T}\mathbf{a } &{}\quad -\mathbf{a }^\mathrm{T}\mathbf{x } \end{array} \right] \nonumber \\= & {} \left[ \begin{array}{cc} 1-\frac{\tau }{2}\mathbf{x }^\mathrm{T}\mathbf{a }&{}\quad -\frac{\tau }{2}\mathbf{x }^\mathrm{T}\mathbf{x }\\ [.5pc] \frac{\tau }{2}\mathbf{a }^\mathrm{T}\mathbf{a }&{}\quad 1+\frac{\tau }{2}\mathbf{a }^\mathrm{T}\mathbf{x } \end{array} \right] \end{aligned}$$
(34)
$$\begin{aligned} y(\tau )= & {} \mathbf{x }-\tau \left[ \begin{array}{ll} \mathbf{a }&{}\quad \mathbf{x }\\ \end{array} \right] \mathbf{S }^{-1}\left[ \begin{array}{c} \mathbf{x }^\mathrm{T}\\ -\mathbf{a }^\mathrm{T} \end{array} \right] \mathbf{x } \end{aligned}$$
(35)

Since \(\mathbf{S }^{-1}=\frac{\mathbf{S }^{*}}{|\mathbf{S }|}\), and

$$\begin{aligned} \mathbf{S }^{*}= & {} \left[ \begin{array}{cc} 1+\frac{\tau }{2}\mathbf{a }^\mathrm{T}\mathbf{x } &{}\quad \frac{\tau }{2}\mathbf{x }^\mathrm{T}\mathbf{x }\\ -\frac{\tau }{2}\mathbf{a }^\mathrm{T}\mathbf{a } &{}\quad 1-\frac{\tau }{2}\mathbf{x }^\mathrm{T}\mathbf{a } \end{array} \right] \end{aligned}$$
(36)
$$\begin{aligned} |\mathbf{S }|= & {} \left( 1+\frac{\tau }{2}\mathbf{a }^\mathrm{T}\mathbf{x }\right) \left( 1-\frac{\tau }{2}\mathbf{x }^\mathrm{T}\mathbf{a }\right) - \left( -\frac{\tau }{2}\mathbf{x }^\mathrm{T}\mathbf{x }\right) \left( \frac{\tau }{2}\mathbf{a }^\mathrm{T}\mathbf{a }\right) \nonumber \\= & {} 1-\left( \frac{\tau }{2}\right) ^{2}(\mathbf{a }^\mathrm{T}\mathbf{x })^{2}+ \left( \frac{\tau }{2}\right) ^{2}\parallel \mathbf{a }\parallel _{2}^{2}\parallel \mathbf{x }\parallel _{2}^{2} \end{aligned}$$
(37)

Let \(k=1-(\frac{\tau }{2})^{2}(\mathbf{a }^\mathrm{T}\mathbf{x })^{2}+ (\frac{\tau }{2})^{2}\parallel \mathbf{a }\parallel _{2}^{2}\parallel \mathbf{x }\parallel _{2}^{2}\), then

$$\begin{aligned} y(\tau )=\mathbf{x }-\tau \left[ \begin{array}{ll} \mathbf{a }&{}\quad \mathbf{x }\\ \end{array} \right] \frac{\mathbf{S }^{*}}{|\mathbf{S }|}\left[ \begin{array}{c} \mathbf{x }^\mathrm{T}\\ -\mathbf{a }^\mathrm{T} \end{array} \right] \mathbf{x } \end{aligned}$$
(38)

Using (3638), one can obtain (15). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Hu, Y., Liang, N. et al. Nonnegative Matrix Factorization with Fixed L2-Norm Constraint. Circuits Syst Signal Process 38, 3211–3226 (2019). https://doi.org/10.1007/s00034-018-1012-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-1012-4

Keywords

Navigation