Skip to main content
Log in

Mathematical mixed-integer programming for solving a new optimization model of selective image restoration: modelling and resolution by CHN and GA

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In grey-level image restoration, a prior knowledge of degraded areas allows, thanks to the selective filtering, to achieve a good protection of the image features. In this paper, we propose a quadratic programming-based technique that deals with the issue of details preservation during the restoration process. Based on the classical model of image restoration, we build a modified model by introducing a set of binary variables that indicate the pixel categories. We combine each pixel with the median of its neighbours in a decision rule so that one of them generates the optimal solution. The obtained model is a nonlinear mixed-integer problem where resolution by exact methods is not feasible. In this regard, we use both of the continuous Hopfield neural network and the genetic algorithm to solve the suggested model. Performance of our method is demonstrated numerically and visually by several computational tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel, Axiomatisation et nouveaux oprateurs de la morphologie mathmatique. Comptes rendus de lAcadmie des sciences. Srie 1, Mathmatique 315, 265–268 (1992)

    MATH  Google Scholar 

  2. J. Astola, P. Kuosmanen, Fundamentals of Nonlinear Digital Filtering (CRC Press, Boca Raton, 1997)

    MATH  Google Scholar 

  3. G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Springer, Berlin, 2006)

    MATH  Google Scholar 

  4. A. Chambolle, V. Caselles, D. Cremers, M. Novaga, T. Pock, An introduction to total variation for image analysis. Theor. Found. Numer. Methods Sparse Rec 9, 227 (2010)

    MathSciNet  MATH  Google Scholar 

  5. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  6. D. Geman, G. Reynolds, Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14, 367–383 (1992)

    Article  Google Scholar 

  7. S. Gu, L. Zhang, W. Zuo, X. Feng, Weighted nuclear norm minimization with application to image denoising, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014), pp. 2862–2869

  8. J. Hadamard, Sur les problemes aux derive espartielles et leur signification physique. Bull. Princet. Univ. 13, 1–20 (1902)

    Google Scholar 

  9. P.C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. J.H. Holland, Adaptation in Natural and Artificial systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press Ann Arbor (1975)

  11. J.J. Hopfield, Neurons with Graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984)

    Article  MATH  Google Scholar 

  12. N. Joudar, K. El Moutouakil, M. Ettaouil, An original continuous Hopfield Network for optimal images restoration. WSEAS Trans. Comput. 14, 668–678 (2015)

    Google Scholar 

  13. N.-E. Joudar, F. Harchli, E.-S. Abdelatif, M. Ettaouil, New adaptive switching scheme for impulse noise removal: modelling and resolution by genetic optimisation. Int. J. Signal Imaging Syst. Eng. 10, 316–323 (2017)

    Article  Google Scholar 

  14. N.-E. Joudar, E. Zakariae, M. Ettaouil, Using continuous hopfield neural network for choice architecture of probabilistic self-organizing map, in First International Conference on Real Time Intelligent Systems (Springer, 2017), pp. 123–133

  15. A.K. Katsaggelos, Digital Image Restoration (Springer, Berlin, 2012)

    Google Scholar 

  16. J.J. Koenderink, The structure of images. Biol. Cybern. 50, 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.K. Ozkan, A.T. Erdem, M.I. Sezan, A.M. Tekalp, Efficient multiframe Wiener restoration of blurred and noisy image sequences. IEEE Trans. Image Process. 1, 453–476 (1992)

    Article  Google Scholar 

  18. J.K. Paik, A.K. Katsaggelos, Image restoration using a modified Hopfield network. IEEE Trans. Image Process. 1, 49–63 (1992)

    Article  Google Scholar 

  19. S. Park, Signal space interpretations of Hopfield neural network for optimization, in IEEE International Symposium on Circuits and Systems 1989 (IEEE, 1989), pp. 2181–2184

  20. P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Ppattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  21. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenom. 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Sakthidasan, N.V. Nagappan, Noise free image restoration using hybrid filter with adaptive genetic algorithm. Comput. Electr. Eng. 54, 382–392 (2016)

    Article  Google Scholar 

  23. P.M. Talavn, J. Yez, Parameter setting of the Hopfield network applied to TSP. Neural Netw. 15, 363–373 (2002)

    Article  Google Scholar 

  24. P.M. Talavn, J. Yez, A continuous Hopfield network equilibrium points algorithm. Comput. Oper. Res. 32, 2179–2196 (2005)

    Article  MathSciNet  Google Scholar 

  25. A.N. Tikhonov, V.A. Arsenin, V. Kotliar, Mthodes de rsolution de problmes mal poss (1976)

  26. S. Uma, S. Annadurai, Image restoration using modified recurrent Hopfield neural network. Int. J. Signal Imaging Syst. Eng. 1, 264–272 (2008)

    Article  Google Scholar 

  27. U.-P. Wen, K.-M. Lan, H.-S. Shih, A review of Hopfield neural networks for solving mathematical programming problems. Eur. J. Oper. Res. 198, 675–687 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. W.-R. Wu, A. Kundu, Image estimation using fast modified reduced update Kalman filter. IEEE Trans. Signal Process. 40, 915–926 (1992)

    Article  Google Scholar 

  29. Y.-D. Wu, Q.-X. Zhu, S.-X. Sun, H.-Y. Zhang, Image restoration using variational PDE-based neural network. Neurocomputing 69, 2364–2368 (2006)

    Article  Google Scholar 

  30. Y.-L. You, M. Kaveh, Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9, 1723–1730 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Y.-T. Zhou, R. Chellappa, A. Vaid, B.K. Jenkins, Image restoration using a neural network. IEEE Trans. Acoust. Speech Signal Process. 36, 1141–1151 (1988)

    Article  MATH  Google Scholar 

  32. Z. Zuo, T. Zhang, X. Lan, L. Yan, An adaptive non-local total variation blind deconvolution employing split Bregman iteration. Circuits Syst. Signal Process. 32, 2407–2421 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour-eddine Joudar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joudar, Ne., Ettaouil, M. Mathematical mixed-integer programming for solving a new optimization model of selective image restoration: modelling and resolution by CHN and GA. Circuits Syst Signal Process 38, 2072–2096 (2019). https://doi.org/10.1007/s00034-018-0950-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0950-1

Keywords

Navigation