Skip to main content
Log in

Distributed Unique-Size MOS Technique: A Promising Universal Approach Capable of Resolving Circuit Design Bottlenecks of Modern Era

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new universal technique based on the unique-size MOS transistors is proposed to resolve the analog circuit design bottlenecks imposed by nowadays modern technology downscaling. The method called here “distributed MOS (DMOS) technique” not only permits utilizing minimum-size transistors for analog circuit design, but also paves the way to emerging new generation of modern circuits and systems. It is proved that employing the proposed technique helps the optimum performance of the circuit to be preserved, regardless of minimum-size MOS transistors’ narrow channel effect and channel length modulation. This capability is anticipated to be logically maintained for even smaller transistors offered by future technology. The threshold and early voltage variations versus the MOS transistor channel width and length are investigated by numerical analysis of the data achieved from TSMC library for 180-nm technology using Cadence software, and the result uncertainty ascribed to them exhibited an excellent agreement with the initially developed extended MOS model. Higher linearity with lower THD is interestingly achieved for the new approach. The excellent conformity among the simulation and post-layout results verified the efficiency of the proposed design technique in practical circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.A. Akers, The inverse-narrow-width effect. IEEE Electron Device Lett. 7, 419–421 (1986)

    Article  Google Scholar 

  2. I.S. Amiri, M. Ghadiry, Introduction on Scaling Issues of Conventional Semiconductors (Springer, Berlin, 2018)

    Book  Google Scholar 

  3. A.J. Annema, B. Nauta, R.V. Langevelde, H. Tuinhout, Analog circuits in ultra-deep-submicron CMOS. IEEE J. Solid-State Circuits 40, 132–143 (2005)

    Article  Google Scholar 

  4. S.J. Azhari, H.F. Baghtash, K. Monfaredi, A novel ultra-high compliance, high output impedance low power very accurate high performance current mirror. Microelectron. J. 42, 432–439 (2011)

    Article  Google Scholar 

  5. C.T. Bowen, System and method for designing a common centroid layout for an integrated circuit, U.S. Patent No. 7,992,117 (2011)

  6. A.I.A. Cunha, M.C. Schneider, C. Galup-Montoro, An MOS transistor model for analog circuit design. IEEE J. Solid-State Circuits 33, 1510–1519 (1998)

    Article  Google Scholar 

  7. J. Deveugele, M.S. Steyaert, A 10-bit 250-MS/s binary-weighted current-steering DAC. IEEE J. Solid-State Circuits 41, 320–329 (2006)

    Article  Google Scholar 

  8. C.C. Enz, F. Krummenacher, E.A. Vittoz, An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integr. Circuits Signal. Process. 8, 83–114 (1995)

    Article  Google Scholar 

  9. C. Fiegna, H. Iwai, T. Wada, M. Saito, E. Sangiorgi, B. Ricco, Scaling the MOS transistor below 0.1/spl mu/m: methodology, device structures, and technology requirements. IEEE Trans. Electron Devices 41, 941–951 (1994)

    Article  Google Scholar 

  10. Y. Frans, S. McLeod, H. Hedayati, M. Elzeftawi, J. Namkoong, W. Lin, J. Im, P. Upadhyaya, K. Chang, A 40-to-64 Gb/s NRZ transmitter with supply-regulated front-end in 16 nm FinFET. IEEE J. Solid-State Circuits 51, 3167–3177 (2016)

    Article  Google Scholar 

  11. P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th edn. (Wiley, Hoboken, 2008)

    Google Scholar 

  12. J.Y. Hasani, Modeling of distributed effects in modern MOS transistors for millimeter wave applications. IEEE Trans. Electron Devices 63, 925–932 (2016)

    Article  Google Scholar 

  13. M. Kumngern, F. Khateb, A low-voltage and low-power multiple-input floating-gate FDCCII, in 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), (2015), pp. 1–5

  14. Z.H. Liu, C. Hu, J.H. Huang, T.Y. Chan, M.C. Jeng, P.K. Ko, Y.C. Cheng, Threshold voltage model for deep-submicrometer MOSFETs. IEEE Trans. Electron Devices 40, 86–95 (1993)

    Article  Google Scholar 

  15. K. Monfaredi, H.F. Baghtash, S.J. Azhari, A novel ultra-low-power low-voltage femto-ampere current mirror. Circuits Syst. Signal Process. 31, 833–847 (2012)

    Article  Google Scholar 

  16. B. Murmann, P. Nikaeen, D.J. Connelly, R.W. Dutton, Impact of scaling on analog performance and associated modeling needs. IEEE Trans. Electron Devices 53, 2160–2167 (2006)

    Article  Google Scholar 

  17. S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, J. Yamada, 1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS. IEEE J. Solid-State Circuits 30, 847–854 (1995)

    Article  Google Scholar 

  18. S. Nobuyuki, T. Ryuta, I. Takashi, M. Yusuke, Y. Hiroyuki, T. Kazuyoshi, K. Shin’ichiro, Comprehensive study on V th variability in silicon on Thin BOX (SOTB) CMOS with small random-dopant fluctuation: Finding a way to further reduce variation, in IEEE International Electron Devices Meeting (2008), pp. 1–4

  19. C. Pacha, B. Martin, K.V. Arnim, R. Brederlow, D. Schmitt-Landsiedel, P. Seegebrecht, J. Berthold, R. Thewes, Impact of STI-induced stress, inverse narrow width effect, and statistical V th variations on leakage currents in 120 nm CMOS, in Proceedings of the 30th European Solid-State Circuits Conference (2004), pp. 397–400

  20. S. Park, K.J. Kim, K.H. Ahn, Stabilization technique for multi-inputs voltage sense amplifiers in node sharing converters. World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Energ., Electron. Commun. Eng. 9, 303–306 (2015)

    Google Scholar 

  21. J. Ramirez-Angulo, R.G. Carvajal, A. Torralba, Low supply voltage high-performance CMOS current mirror with low input and output voltage requirements. IEEE Trans. Circuits Syst. II Express Briefs 51, 124–129 (2004)

    Article  Google Scholar 

  22. B. Razavi, Design of Analog CMOS Integrated circuits (2001)

  23. B. Razavi, Y. Ran-Hong, K.F. Lee, Impact of distributed gate resistance on the performance of MOS devices. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 41, 750–754 (1994)

    Article  Google Scholar 

  24. J. Sarao, Z. Wang, Y. Wu, H. Kwok, An improved regulated cascode current mirror. Solid-State Electron. 46, 307–312 (2002)

    Article  Google Scholar 

  25. B.J. Sheu, D.L. Scharfetter, P.K. Ko, M.C. Jeng, BSIM: Berkeley short-channel IGFET model for MOS transistors. IEEE J. Solid-State Circuits 22, 558–566 (1987)

    Article  Google Scholar 

  26. N. Sugii, R. Tsuchiya, T. Ishigaki, Y. Morita, H. Yoshimoto, S. Kimura, Local V th variability and scalability in Silicon-on-Thin-BOX (SOTB) CMOS with small random-dopant fluctuation. IEEE Trans. Electron Devices 57, 835–845 (2010)

    Article  Google Scholar 

  27. P. Upadhyaya, J. Savoj, F.T. An, A. Bekele, A. Jose, B. Xu, D. Wu, D. Turker, H. Aslanzadeh, H. Hedayati, J. Im, 3.3 A 0.5-to-32.75 Gb/s flexible-reach wireline transceiver in 20 nm CMOS, in IEEE International Solid-State Circuits Conference (2015), pp. 1–3

  28. P.P. Wang, Device characteristics of short-channel and narrow-width MOSFET’s. IEEE Trans. Electron Devices 25, 779–786 (1978)

    Article  Google Scholar 

  29. X. Zhou, K.Y. Lim, D. Lim, A simple and unambiguous definition of threshold voltage and its implications in deep-submicron MOS device modeling. IEEE Trans. Electron Devices 46, 807–809 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Monfaredi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monfaredi, K. Distributed Unique-Size MOS Technique: A Promising Universal Approach Capable of Resolving Circuit Design Bottlenecks of Modern Era. Circuits Syst Signal Process 38, 512–528 (2019). https://doi.org/10.1007/s00034-018-0888-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0888-3

Keywords

Navigation