Advertisement

Distributed Fault-Tolerant Consensus Protocol for Fuzzy Multi-Agent Systems

Article
  • 3 Downloads

Abstract

A distributed actuator fault-tolerant strategy for fuzzy multi-agent systems is investigated in this paper. The proposed strategy utilizes an adaptive methodology in designing the consensus control. Compared with well-known consensus analysis, this paper devotes to the fault effect in analyzing multi-agent consensus problem. We conducted a Lyapunov stability analysis to unfold the advantages of proposed method in the distributed fault-tolerant control. Simulation example is provided to demonstrate the effectiveness of the theoretical results.

Keywords

Consensus Fuzzy multi-agent systems Fault 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant 11626108 and 61673351, the Fundamental Research Funds for the Central Universities (2662015QD051). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research.

References

  1. 1.
    A. Abdurahman, H. Jiang, Z. Teng, Finite-time synchronization for fuzzy cellular neural networks with time-varying delays. Fuzzy Sets Syst. 297, 96–111 (2016)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    S. Chen, D.W.C. Ho, L. Li, M. Liu, Fault-tolerant consensus of multi-agent system with distributed adaptive protocol. IEEE Trans. Cybern. 45(10), 2142–2155 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Chen, D.W.C. Ho, Sampled-data approach to state estimation performance for heterogeneous distributed system with fault. Asian J. Control 17(6), 1–11 (2015)MathSciNetMATHGoogle Scholar
  4. 4.
    Z. Gao, T. Breikin, H. Wang, High-gain estimator and fault-tolerant design with application to a gas turbine dynamic system. IEEE Trans. Control Syst. Technol. 15(4), 740–753 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Gao, T. Chen, Stabilization of nonlinear systems under variable sampling: a fuzzy control approach. IEEE Trans. Fuzzy Syst. 15(5), 972–983 (2007)CrossRefGoogle Scholar
  6. 6.
    R.A. Horn, C.R. Johnson, Matrix analysis (Cambridge University Press, Cambridge, 1985)CrossRefMATHGoogle Scholar
  7. 7.
    M. Hu, J. Cao, A. Hu, Y. Yang, Y. Jin, A novel finite-time stability criterion for linear discrete-time stochastic system with applications to consensus of multi-agent system. Circuits Syst. Signal Process. 34(1), 41–59 (2015)CrossRefMATHGoogle Scholar
  8. 8.
    C. Huang, D. Ho, J. Lu, J. Kurths, Pinning synchronization in T-S fuzzy complex networks with partial and discrete-time couplings. IEEE Trans. Fuzzy Syst. 23(4), 1274–1285 (2015)CrossRefGoogle Scholar
  9. 9.
    P.A. Ioannou, J. Sun, Robust adaptive control (PTR Prentice-Hall, Upper Saddle River, 1996)MATHGoogle Scholar
  10. 10.
    A. Jadbabaie, J. Lin, A. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    R. Jia, Finite-time stability of a class of fuzzy cellular neural networks with multi-proportional delays. Fuzzy Sets Syst. 319, 70–80 (2017)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    B. Jiang, M. Staroswiecki, V. Cocquempot, Fault accommodation for nonlinear dynamic systems. IEEE Trans. Autom. Control 51(9), 1578–1583 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    L. Li, D.W.C. Ho, J. Lu, A unified approach to practical consensus with quantized data and time delay. IEEE Trans. Circuits Syst. I Regul. Pap. 60(10), 2668–2678 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Y. Li, Impulsive synchronization of stochastic neural networks via controlling partial states. Neural Process. Lett. 46(1), 59–69 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Liu, D.W.C. Ho, P. Shi, Adaptive fault-tolerant compensation control for Markovian jump systems with mismatched external disturbance. Automatica 58, 5–14 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    J. Lu, C. Ding, J. Lou, J. Cao, Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers. J. Franklin Inst. 352(11), 5024–5041 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    J. Lu, Z. Wang, J. Cao, D.W.C. Ho, Pinning impulsive stabilization of nonlinear dynamical networks with time-varying delay. Int. J. Bifurcat. Chaos 22, 1250176 (2012)CrossRefMATHGoogle Scholar
  18. 18.
    R. Olfati-Saber, R. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    W. Ren, R.W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Q. Shen, B. Jiang, V. Cocquempot, Adaptive fault-tolerant backstepping control against actuator gain faults and its applications to an aircraft longitudinal motion dynamics. Int. J. Robust Nonlinear Control 23(15), 1753–1779 (2013)MathSciNetMATHGoogle Scholar
  21. 21.
    Q. Song, F. Liu, J. Cao, W. Yu, M-matrix strategies for pinning-controlled leader-following consensus in multiagent systems with nonlinear dynamics. IEEE Trans. Cybern. 43(6), 1688–1697 (2013)CrossRefGoogle Scholar
  22. 22.
    X. Su, L. Wu, P. Shi, Sensor networks with random link failures: distributed filtering for T–S fuzzy systems. IEEE Trans. Industr. Inf. 9(3), 1739–1750 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Wang, B. Chen, X. Liu, P. Shi, Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems. Fuzzy Sets Syst. 159(8), 949–967 (2008)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    G. Wen, Z. Duan, G. Chen, W. Yu, Consensus tracking of multi-agent systems with lipschitz-type node dynamics and switching topologies. IEEE Trans. Circuits Syst. I Regul. Pap. 61(2), 499–511 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    G. Wen, Y. Zhao, Z. Duan, W. Yu, G. Chen, Containment of higher-order multi-leader multi-agent systems: a dynamic output approach. IEEE Trans. Autom. Control 61(4), 1135–1140 (2016)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Y. Wu, R. Lu, Event-based control for network systems via integral quadratic constraints. IEEE Trans. Circuits Syst. I Regul. Pap. 65(4), 1386–1394 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    L. Wu, D.W.C. Ho, Fuzzy filter design for ito stochastic systems with application to sensor fault detection. IEEE Trans. Fuzzy Syst. 17(1), 233–242 (2009)CrossRefGoogle Scholar
  28. 28.
    Y. Wu, R. Lu, Output synchronization and L2-gain analysis for network systems. IEEE Trans. Syst. Man Cybern. Syst. (2017).  https://doi.org/10.1109/TSMC.2017.2754544 Google Scholar
  29. 29.
    H. Wang, Z. Wang, Y.-J. Liu, S. Tong, Fuzzy tracking adaptive control of discrete-time switched nonlinear systems. Fuzzy Sets Syst. 316, 35–48 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    W. Xiong, D.W.C. Ho, Z. Wang, Consensus analysis of multiagent networks via aggregated and pinning approaches. IEEE Trans. Neural Netw. 22(8), 1231–1240 (2011)CrossRefGoogle Scholar
  31. 31.
    W. Xiong, W. Yu, J. Lu, X. Yu, Fuzzy modelling and consensus of nonlinear multiagent systems with variable structure. IEEE Trans. Circuits Syst. I Regul. Pap. 61(4), 1183–1191 (2014)CrossRefGoogle Scholar
  32. 32.
    W. Yu, G. Chen, M. Cao, Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46(6), 1089–1095 (2010)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    W. Yu, L. Zhou, X. Yu, J. Lu, R. Lu, Consensus in multi-agent systems with second-order dynamics and sampled data. IEEE Trans. Industr. Inf. 9(4), 2137–2146 (2013)CrossRefGoogle Scholar
  34. 34.
    D. Zhao, M. Chi, Z.-H. Guan, Y. Wu, J. Chen, Distributed estimator-based fault detection for multi-agent networks. Circuits Syst. Signal Process. 37(1), 98–111 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Q. Zhou, C. Wu, P. Shi, Observer-based adaptive fuzzy tracking control of nonlinear systems with time delay and input saturation. Fuzzy Sets Syst. 316, 49–68 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Z. Zuo, D.W.C. Ho, Y. Wang, Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation. Automatica 46(3), 569–576 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsHuazhong Agriculture UniversityWuhanChina
  2. 2.Department of AutomationZhejiang University of TechnologyHangzhouChina

Personalised recommendations