Advertisement

Minimization of Spread of Time-Constants and Scaling Factors in Fractional-Order Differentiator and Integrator Realizations

  • Stavroula Kapoulea
  • Costas Psychalinos
  • Ahmed S. Elwakil
Short Paper
  • 64 Downloads

Abstract

The approximations of fractional-order differentiator/integrator transfer functions are currently performed using integer-order rational functions, which are in general implemented through appropriate multi-feedback topologies. The spreading in the values of time-constants and scaling factors, needed to implement these topologies, increases as the order of the differentiator/integrator and/or the order of the approximation increases. This leads to non-practical values of capacitances and resistances/transconductances in the implementation. A solution to overcome this obstacle is introduced in this paper, based on the employment of a combination of fractional-order and integer-order integrators and differentiators for implementing the desired function. The performance of the proposed scheme is verified through post-layout simulations using Cadence and the Design Kit provided by the Austria Mikro Systeme \(0.35~\upmu \mathrm{m}\) CMOS technology process.

Keywords

Fractional-order circuits Fractional-order integrators Fractional-order differentiators Operational transconductance amplifiers CMOS analog integrated circuits 

References

  1. 1.
    A. Agambayev, S.P. Patole, M. Farhat, A. Elwakil, H. Bagci, K.N. Salama, Ferroelectric fractional-order capacitors. ChemElectroChem 4(11), 2807–2813 (2017)CrossRefGoogle Scholar
  2. 2.
    P. Bertsias, F. Khateb, D. Kubanek, F.A. Khanday, C. Psychalinos, Capacitorless digitally programmable fractional-order filters. AEU Int. J. Electron. Commun. 78, 228–237 (2017)CrossRefGoogle Scholar
  3. 3.
    P. Bertsias, C. Psychalinos, A. Elwakil, B. Maundy, Current-mode capacitorless integrators and differentiators for implementing emulators of fractional-order elements. AEU Int. J. Electron. Commun. 80, 94–103 (2017)CrossRefGoogle Scholar
  4. 4.
    P. Bertsias, C. Psychalinos, A.G. Radwan, A.S. Elwakil, High-frequency capacitorless fractional-order CPE and FI emulator. Circuits Syst. Signal Process. (2017).  https://doi.org/10.1007/s00034-017-0697-0
  5. 5.
    R. Caponetto, G. Dongola, G. Maione, A. Pisano, Integrated technology fractional order proportional–integral-derivative design. J. Vib. Control 20(7), 1066–1075 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Caponetto, S. Graziani, F.L. Pappalardo, F. Sapuppo, Experimental characterization of ionic polymer metal composite as a novel fractional order element. Adv. Math. Phys. 1–10, 2013 (2013)zbMATHGoogle Scholar
  7. 7.
    G. Carlson, C. Halijak, Approximation of fractional capacitors \((1/s)^{1/n}\) by a regular Newton process. IEEE Trans. Circuit Theory 11(2), 210–213 (1964)CrossRefGoogle Scholar
  8. 8.
    P. Corbishley, E. Rodriguez-Villegas, A nanopower bandpass filter for detection of an acoustic signal in a wearable breathing detector. IEEE Trans. Biomed. Circuits Syst. 1(3), 163–171 (2007)CrossRefGoogle Scholar
  9. 9.
    I. Dimeas, I. Petraš, C. Psychalinos, New analog implementation technique for fractional-order controller: a DC motor control. AEU Int. J. Electron. Commun. 78, 192–200 (2017)CrossRefGoogle Scholar
  10. 10.
    I. Dimeas, G. Tsirimokou, C. Psychalinos, A.S. Elwakil, Experimental verification of fractional-order filters using a reconfigurable fractional-order impedance emulator. J Circuits Syst Comput 26(09), 1750142 (2017)CrossRefGoogle Scholar
  11. 11.
    T.J. Freeborn, A.S. Elwakil, B. Maundy, Approximated fractional-order inverse Chebyshev lowpass filters. Circuits Syst Signal Process 35(6), 1973–1982 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    T.J. Freeborn, B. Maundy, A.S. Elwakil, Field programmable analogue array implementation of fractional step filters. IET Circuits Devices Syst. 4(6), 514–524 (2010)CrossRefGoogle Scholar
  13. 13.
    C. Halijak, An RC impedance approximant to \((1/s)^{1/2}\). IEEE Trans. Circuit Theory 11(4), 494–495 (1964)CrossRefGoogle Scholar
  14. 14.
    J. Jerabek, R. Sotner, J. Dvorak, J. Polak, D. Kubanek, N. Herencsar, J. Koton, Reconfigurable fractional-order filter with electronically controllable slope of attenuation, pole frequency and type of approximation. J. Circuits Syst. Comput. 26(10), 1750157 (2017)CrossRefGoogle Scholar
  15. 15.
    I.S. Jesus, J.T. Machado, Development of fractional order capacitors based on electrolyte processes. Nonlinear Dyn. 56(1–2), 45–55 (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    D.A. John, S. Banerjee, G.W. Bohannan, K. Biswas, Solid-state fractional capacitor using MWCNT-epoxy nanocomposite. Appl. Phys. Lett. 110(16), 163504 (2017)CrossRefGoogle Scholar
  17. 17.
    N.A. Kant, M.R. Dar, F.A. Khanday, C. Psychalinos, Ultra-low-voltage integrable electronic realization of integer-and fractional-order Liao’s chaotic delayed neuron model. Circuits Syst. Signal Process. 36(12), 4844–4868 (2017)CrossRefGoogle Scholar
  18. 18.
    B. Krishna, Studies on fractional order differentiators and integrators: a survey. Sig. Process. 91(3), 386–426 (2011)CrossRefzbMATHGoogle Scholar
  19. 19.
    D. Kubánek, F. Khateb, G. Tsirimokou, C. Psychalinos, Practical design and evaluation of fractional-order oscillator using differential voltage current conveyors. Circuits Syst. Signal Process. 35(6), 2003–2016 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    P.A. Mohan, OTA-C filters, in VLSI Analog Filters, ed. by P.A. Mohan (Springer, Berlin, 2013), pp. 147–249CrossRefGoogle Scholar
  21. 21.
    A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)CrossRefGoogle Scholar
  22. 22.
    I. Podlubny, I. Petraš, B.M. Vinagre, P. O’leary, L. Dorčák, Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29(1), 281–296 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    A.G. Radwan, Resonance and quality factor of the \({{RL}}_{\beta } {{C}}_{\alpha }\) circuit. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 377–385 (2013)CrossRefGoogle Scholar
  24. 24.
    A.G. Radwan, M.E. Fouda, Optimization of fractional-order RLC filters. Circuits Syst. Signal Process. 32(5), 2097–2118 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A.G. Radwan, K.N. Salama, Passive and active elements using fractional \({{L}}_{\beta } {{C}}_{\alpha }\) circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 58(10), 2388–2397 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Roy, On the realization of a constant-argument immittance or fractional operator. IEEE Trans. Circuit Theory 14(3), 264–274 (1967)CrossRefGoogle Scholar
  27. 27.
    L.A. Said, A.G. Radwan, A.H. Madian, A.M. Soliman, Fractional order oscillator design based on two-port network. Circuits Syst. Signal Process. 35(9), 3086–3112 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Soltan, A.G. Radwan, A.M. Soliman, Fractional order Sallen–Key and KHN filters: stability and poles allocation. Circuits Syst. Signal Process. 34(5), 1461–1480 (2015)CrossRefzbMATHGoogle Scholar
  29. 29.
    M.C. Tripathy, D. Mondal, K. Biswas, S. Sen, Experimental studies on realization of fractional inductors and fractional-order bandpass filters. Int. J. Circuit Theory Appl. 43(9), 1183–1196 (2015)CrossRefGoogle Scholar
  30. 30.
    G. Tsirimokou, A. Kartci, J. Koton, N. Herencsar, C. Psychalinos, Comparative study of discrete component realizations of fractional-order capacitor and inductor active emulators. J. Circuits Syst. Comput. 27(11), 1850170 (2018)CrossRefGoogle Scholar
  31. 31.
    G. Tsirimokou, C. Psychalinos, Ultra-low voltage fractional-order differentiator and integrator topologies: an application for handling noisy ECGs. Analog Integr. Circ. Sig. Process 81(2), 393–405 (2014)CrossRefGoogle Scholar
  32. 32.
    G. Tsirimokou, C. Psychalinos, Ultra-low voltage fractional-order circuits using current mirrors. Int. J. Circuit Theory Appl. 44(1), 109–126 (2016)CrossRefGoogle Scholar
  33. 33.
    G. Tsirimokou, C. Psychalinos, A.S. Elwakil, K.N. Salama, Electronically tunable fully integrated fractional-order resonator. IEEE Trans. Circuits Syst. II Express Briefs 65(2), 166–170 (2018)CrossRefGoogle Scholar
  34. 34.
    J. Valsa, J. Vlach, RC models of a constant phase element. Int. J. Circuit Theory Appl. 41(1), 59–67 (2013)Google Scholar
  35. 35.
    C. Vastarouchas, G. Tsirimokou, T.J. Freeborn, C. Psychalinos, Emulation of an electrical-analogue of a fractional-order human respiratory mechanical impedance model using OTA topologies. AEU Int. J. Electron. Commun. 78, 201–208 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electronics Laboratory, Physics DepartmentUniversity of PatrasRio PatrasGreece
  2. 2.Department of Electrical and Computer EngineeringUniversity of SharjahSharjahUnited Arab Emirates
  3. 3.Nanoelectronics Integrated Systems Center (NISC)Nile UniversityGizaEgypt

Personalised recommendations