Improved Frequency Estimation Algorithm by Least Squares Phase Unwrapping

  • Shen Zhou
  • Zhang Shancong
Short Paper


Among the frequency estimation methods, the least squares phase unwrapping estimator (LSPUE) that unwraps the phase in the least squares sense has a much better performance than other phase unwrapping estimators. In this paper, based on a more accurate phase model, an improved LSPUE is presented. Compared with other LSPUE, the performance is improved in two aspects. Firstly, when the number of samples is small, our estimator has a lower signal-to-noise ratio (SNR) threshold. Secondly, from the medium SNR, the LSPUE has an asymptotic mean square error (MSE) which is larger than the Cramer–Rao bound (CRB) but the MSE of our estimator converges to the CRB.


Frequency estimation Least squares Phase unwrapping 


  1. 1.
    H. Fu, P.Y. Kam, Phase-based, time-domain estimation of the frequency and phase of a single sinusoid in AWGN the role and applications of the additive observation phase noise model. IEEE Trans. Inf. Theory 59(5), 3175–3188 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    H. Fu, P.Y. Kam, MAP/ML estimation of the frequency and phase of a single sinusoid in noise. IEEE Trans. Signal Proces. 55(3), 834–845 (2007). MathSciNetCrossRefGoogle Scholar
  3. 3.
    C.A. Haniff, Least-squares Fourier phase estimation from the modulo 2 bispectrum phase. J. Opt. Soc. Am. A 8(1), 134–140 (1991). CrossRefGoogle Scholar
  4. 4.
    S.M. Kay, A fast and accurate single frequency estimator. IEEE Trans. Acoust. Speech Signal Process. 37(12), 1987–1990 (1990). CrossRefGoogle Scholar
  5. 5.
    S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (PTR Prentice Hall, Upper Saddle River, 1993), p. 57zbMATHGoogle Scholar
  6. 6.
    R.G. Mckilliam, B.G. Quinn, I.V.L. Clarkson et al., Frequency estimation by phase unwrapping. IEEE Trans. Signal Proces. 58(6), 2953–2963 (2010). MathSciNetCrossRefGoogle Scholar
  7. 7.
    C. Qian, L. Huang, H.C. So et al., Unitary PUMA algorithm for estimating the frequency of a complex sinusoid. IEEE Trans. Signal Proces. 63(20), 5358–5368 (2015). MathSciNetCrossRefGoogle Scholar
  8. 8.
    D.C. Rife, R.R. Boorstyn, Single-tone parameter estimation from discrete-time observations. IEEE Trans. Inf. Theory 20(5), 591–598 (1974). CrossRefzbMATHGoogle Scholar
  9. 9.
    H.C. So, F.K.W. Chan, W.H. Lau, C.F. Chan, An efficient approach for two-dimensional parameter estimation of a single-tone. IEEE Trans. Signal Proces. 58(4), 1999–2009 (2010). MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Tretter, Estimating the frequency of a noisy sinusoid by linear regression (Corresp.). IEEE Trans. Inf. Theory 31(6), 832–835 (1985). CrossRefGoogle Scholar
  11. 11.
    Z. Xu, B. Huang, S. Xu, Robust phase unwrapping algorithm. Electron. Lett. 49(24), 1565–1567 (2013). CrossRefGoogle Scholar
  12. 12.
    Z. Xu, T. Lu, B. Huang, Fast frequency estimation algorithm by least squares phase unwrapping. IEEE Signal Process. Lett. 23(6), 776–779 (2016). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Chinese Academy of SciencesBeijingChina
  2. 2.Technology and Engineering Center for Space UtilizationChinese Academy of SciencesBeijingChina

Personalised recommendations