Algorithms for Multiplierless Multiple Constant Multiplication in Online Arithmetic

Article
  • 29 Downloads

Abstract

Online arithmetic operators offer advantages of reduction in resource utilization and interconnection complexity besides providing pipelining at digit level. Multiplierless constant coefficient multiplication using the shift-and-add technique is widely used in digital signal processing applications. This paper proposes a novel bit serial adaptation of the parallel shift-and-add algorithm to online arithmetic. The proposed multipliers use right shifts instead of the traditional left shifts resulting in causal online implementations. Graph-based and hybrid algorithms are developed for the estimation of the distance of a constant from a set of constants in terms of the number of additions and for the synthesis of online multiple constant multipliers under area and online delay constraints. The computational complexity of the algorithms is determined. Results of implementation on randomly generated constant sets and FIR filter instances show substantial improvements in the number of operations required using the distance heuristic. Further, it is shown that the proposed techniques and algorithms result in significant savings in resource utilization, logic depth, and clock frequency compared to parallel and digit-serial algorithms.

Keywords

Online arithmetic Digital signal processing Constant coefficient multiplication Graph-based algorithms Field-programmable gate arrays 

References

  1. 1.
    L. Aksoy, E. Costa, P. Flores, J. Monteiro, Exact and approximate algorithms for the optimization of area and delay in multiple constant multiplications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(6), 1013–1026 (2008)CrossRefGoogle Scholar
  2. 2.
    L. Aksoy, E. Gunes, P. Flores, Search algorithms for the multiple constant multiplications problem: exact and approximate. Elsevier J. Microprocess. Microsyst. 34(5), 151–162 (2010)CrossRefGoogle Scholar
  3. 3.
    L. Aksoy, E. Costa, P. Flores, J. Monteiro, Finding the optimal tradeoff between area and delay in multiple constant multiplications. Elsevier J. Microprocess. Microsyst. 35, 729–741 (2011)CrossRefGoogle Scholar
  4. 4.
    L. Aksoy, C. Lazzari, E. Costa, P. Flores, J. Monteiro, High-level algorithms for the optimization of gate-level area in digit-serial multiple constant multiplications. INTEGRATION VLSI J. 45(3), 294–306 (2012)CrossRefGoogle Scholar
  5. 5.
    F. Al-Hasani, M.P. Hayes, A. Bainbridge-Smith, A common subexpression elimination tree algorithm. IEEE Trans. Circuits Syst.-I: Regul. Pap. 60(9), 2389–2400 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D.R. Bull, D.H. Horrocks, Primitive operator digital filters. IEE Proc. G Circuits Devices Syst. 138(3), 401–412 (1991)CrossRefGoogle Scholar
  7. 7.
    P. Cappello, K. Steiglitz, Some complexity issues in digital signal processing. IEEE Trans. Acoust. Speech Signal Process. 32(5), 1037–1041 (1984)CrossRefMATHGoogle Scholar
  8. 8.
    A.G. Dempster, M.D. Macleod, Constant integer multiplication using minimum adders. IEE Proc. Circuits Devices Syst. 141(5), 407–413 (1994)CrossRefMATHGoogle Scholar
  9. 9.
    A.G. Dempster, M.D. Macleod, Use of minimum-adder multiplier blocks in FIR digital filters. IEEE Trans. Circuits Syst.-II 42(9), 569–577 (1995)CrossRefMATHGoogle Scholar
  10. 10.
    M.D. Ercegovac, T. Lang, Digital Arithmetic (Morgan Kaufmann, San Francisco, 2004)Google Scholar
  11. 11.
    M. Farahani, E. Guerra, B. Colpitts, Efficient implementation of FIR filters based on a novel common subexpression elimination algorithm, in Proceedings Canadian Conference on Electrical and Computer Engineering, pp. 1–4 (2010)Google Scholar
  12. 12.
    O. Gustafsson, A difference based adder graph heuristic for multiple constant multiplication problems, in Proceedings IEEE International Symposium on Circuits and Systems, pp. 1097–1100 (2007)Google Scholar
  13. 13.
    K. Johansson, O. Gustafsson, A. Dempster, L. Wanhammar, Algorithm to reduce the number of shifts and additions in multiplier blocks using serial arithmetic, in Proceedings IEEE Meditteranean Electrotechnical Conference, pp. 197–200 (2004)Google Scholar
  14. 14.
    K. Johansson, O. Gustafsson, L. Wanhammar, Multiple constant multiplication for digit-serial implementation of low power FIR filters. WSEAS Trans. Circuits Syst. 5(7), 1001–1008 (2006)Google Scholar
  15. 15.
    G.B. Joseph, R. Devanathan, Radix-2h online floating point multipliers, in Proceedings 10th IEEE Dallas Circuits and Systems Conference, DCAS 14, pp. 1–4 (2014)Google Scholar
  16. 16.
    G.B. Joseph, Architectures for online processing in reconfigurable computing. Doctoral dissertation submitted to Hindustan Institute of Technology and Science, Chennai, India (2017)Google Scholar
  17. 17.
    M. Kumm, K. Liebisch, P. Zipf, Reduced complexity single and multiple constant multiplication in floating point precision, in Proceedings 22nd International Conference on Field Programmable Logic and Applications, pp. 255–261 (2012)Google Scholar
  18. 18.
    J.V. Moreno, T. Lang, J. Hormigo, Radix-2 multioperand and multiformat streaming online addition. IEEE Trans. Comput. 61(6), 790–803 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Y. Pan, P.K. Meher, Bit-level optimization of adder-trees for multiple constant multiplications for efficient FIR filter implementation. IEEE Trans. Circuits Syst. I: Regul. Pap. 61(2), 455–462 (2014)CrossRefGoogle Scholar
  20. 20.
    K. Shi, D. Boland, G.A. Constantinides, Efficient FPGA implementation of digit parallel online arithmetic operators, in Proceedings IEEE International Conference on Field-Programmable Technology (FPT), pp. 115–122 (2014)Google Scholar
  21. 21.
    Y. Voronenko, M. Püschel, Multiplierless multiple constant multiplication. ACM Trans. Algorithms 3(2), 1–38 (2007)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    C.Y. Yao, H.H. Chen, T.F. Lin, C.J. Chien, C.T. Hsu, A novel common subexpression elimination method for synthesizing fixed-point FIR filters. IEEE Trans. Circuits Systems-I Regul. Pap. 51(11), 2215–2221 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringToc H Institute of Science and TechnologyKochiIndia
  2. 2.School of Electrical EngineeringHindustan Institute of Technology and ScienceChennaiIndia

Personalised recommendations