A Differentially Quantized Bandpass Error Feedback Modulator for ADCs in Digital Radio

  • Rijo Sebastian
  • A. V. Jos Prakash
  • Babita R. Jose
  • Jimson Mathew


Bandpass sigma delta modulators are highly desirable in precision analog-to-digital conversion applications for narrow-band intermediate frequency signals. This paper describes the design, analysis and implementation of a novel differentially quantized bandpass analog-to-digital conversion technique for digital radio application. A new class of noise-shaping data converter, i.e., the differential quantizer-based error feedback modulator, is introduced, which replaces the integrator/resonator with a differential quantizer to achieve noise-shaping characteristics. Thus, integrator-associated non-idealities, loop stability issues and optimization of the integrator scaling coefficients are no more a concern. Furthermore, a comparison to the conventional bandpass sigma delta analog-to-digital conversion is also been presented here. Behavioral-level simulation results demonstrate the mathematical equivalence of the differential quantizer-based bandpass error feedback modulator technique with bandpass sigma delta modulator technique and confirm its novelty, theoretical stability and scalability to higher order. The circuit-level feasibility, hardware efficiency and power efficiency of the proposed architecture are verified in a 45 nm CMOS process with a 1 V supply. Simulation results show a power consumption of 0.62 and 0.95 mW for the proposed and the conventional architectures, respectively.


Analog-to-digital conversion Quantization Noise shaping Bandpass sigma delta modulator Multi-stage 

Mathematics Subject Classification

93C57 93B11 94A14 



This work was funded by Kerala State Council for Science, Technology and Environment (KSCSTE). Rijo Sebastian was supported by the Government of India through the research fellowship under MANF scheme (Grant No. F1-17.1/2014-15/MANF-CHR-KER-47651).


  1. 1.
    R.J. Baker, CMOS Circuit Design, Layout and Simulation (IEEE Press, Wiley, Hoboken, New Jersey, 2010)CrossRefGoogle Scholar
  2. 2.
    S. Brigati, F. Francesconi, P. Malcovati, F. Maloberti, Modeling Band-Pass Sigma–Delta Modulators in Simulink. Department of Electronic Engineering, University of PaviaGoogle Scholar
  3. 3.
    F. Francesconi, V. Liberali, F. Maloberti, A bandpass sigma–delta modulator architecture for digital radio, in Proceedings of the Midwest Symposium On Circuits and Systems (Rio de Janeiro, Brazil, 1995), pp. 885–888Google Scholar
  4. 4.
    I. Galton, Delta-sigma data conversion in wireless transceivers. IEEE Trans. Microw. Theory Technol. 50(1), 302–315 (2002)CrossRefGoogle Scholar
  5. 5.
    H. Inose, Y. Yasuda, J. Murakami, A telemetering system by code modulation: \(\Delta \)\(\Sigma \) modulation. IRE Trans. Space Electron. Telem. 8(3), 204–209 (1962)CrossRefGoogle Scholar
  6. 6.
    S. Jantzi, R. Schreier, M. Snelgrove, Bandpass sigma–delta analog-to-digital conversion. IEEE Trans. Circuits Syst. 38(11), 1406–1409 (1991)CrossRefGoogle Scholar
  7. 7.
    S.A. Jantzi, W.M. Snelgrove, P.F. Ferguson, A fourth order bandpass sigma–delta modulator. IEEE J. Solid-State Circuits 28(3), 282–291 (1993)CrossRefGoogle Scholar
  8. 8.
    D. Johns, K. Martin, Analog Integrated Circuit Design (Wiley, New York, 1996)MATHGoogle Scholar
  9. 9.
    M. Keskin, U. Moon, G.C. Temes, Amplifier imperfection effects in switched-capacitor resonators, in Proceedings of IEEE International Workshop ADC Modeling Testing (2003), pp. 67–70Google Scholar
  10. 10.
    K. Lee, M. Bonu, G.C. Temes, Noise-coupled \(\Delta \Sigma \) ADCs. Electron. Lett. 42(24), 1381–1382 (2006)CrossRefGoogle Scholar
  11. 11.
    H. Lin, Y. Zhang, F. Long, F. Mei, M. Yu, F. Lin, L. Yao, X. Jiang, Digital noise-coupling technique for delta-sigma modulators with segmented quantization. IEEE Trans. Circ. Syst. 61(6), 403–407 (2014)Google Scholar
  12. 12.
    L. Longo, B.R. Horng, A 15 b 30 kHz bandpass sigma–delta modulator, in IEEE International Solid-State Circuits Conference (San Francisco, CA, 1993), pp. 226–227Google Scholar
  13. 13.
    N. Maghari, G.C. Temes, U. Moon, Single-loop DS modulator with extended dynamic range. Electron. Lett. 44(25), 1452–1453 (2008)CrossRefGoogle Scholar
  14. 14.
    N. Maghari, S. Kwon, G.C. Temes, U. Moon, Sturdy MASH \(\Delta \)-\(\Sigma \) modulator. Electron. Lett. 42(22), 1269–1270 (2006)CrossRefGoogle Scholar
  15. 15.
    F. Maloberti, Data Converters (Springer, Netherlands, 2007)Google Scholar
  16. 16.
    M. Momeni, A. Guntoro, H.P. Keil, M. Glesner, Impact of circuit nonidealities on the implementation of switched-capacitor resonators, in Proceedings of IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS) (Macau, China, 2008), pp. 1624–1627Google Scholar
  17. 17.
    S.R. Norsworthy, R. Schreier, G.C. Temes, Delta–Sigma Data Converters: Theory, Design, and Simulation (IEEE Press, New York, 1996)CrossRefGoogle Scholar
  18. 18.
    J. Prakash, B.R. Jose, J. Mathew, B.A. Jose, A differential quantizer based error feedback modulator for analog to digital converters. IEEE Trans. Circuits Syst. II Express Briefs 65(1), 21–25 (2018)CrossRefGoogle Scholar
  19. 19.
    L.R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing (Prentice Hall, Englewood Cliffs, 1975)Google Scholar
  20. 20.
    A. Rusu, M. Ismail, Low-distortion bandpass \(\Sigma \)\(\Delta \) modulator for wireless radio receivers. Electron. Lett. 41(19), 1044–1046 (2005)CrossRefGoogle Scholar
  21. 21.
    R. Schreier, M. Snelgrove, Bandpass sigma–delta modulation. Electron. Lett. 25, 1560–1561 (1989)CrossRefGoogle Scholar
  22. 22.
    R. Schreier, G.C. Temes, Understanding Delta–Sigma Data Converters (IEEE Press, Piscataway, 2005)Google Scholar
  23. 23.
    F.W. Signor, W.M. Snelgrove, Switched-capacitor bandpass delta–sigma A/D modulation at 10.7 MHz. IEEE J. Solid State Circuits 30(3), 184–192 (1995)CrossRefGoogle Scholar
  24. 24.
    B.S. Song, A fourth-order bandpass delta–sigma modulator with reduced number of OP amps. IEEE J. Solid-State Circuits 30(12), 1309–1315 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Electronics, School of EngineeringCochin University of Science and TechnologyKochiIndia
  2. 2.Department of Electronics and Communication EngineeringRajagiri School of Engineering and TechnologyErnakulamIndia
  3. 3.Department of Computer Science and EngineeringIndian Institute of Technology PatnaPatnaIndia

Personalised recommendations