A High-Speed VLSI Architecture for Motion Estimation Using Modified Adaptive Rood Pattern Search Algorithm

  • Baishik Biswas
  • Rohan Mukherjee
  • Indrajit Chakrabarti
  • Pranab Kumar Dutta
  • Ajoy Kumar Ray


The paper presents an efficient VLSI architecture for fast Motion Estimation in video codec using modified Adaptive Rood Pattern Search Algorithm. The proposed architecture uses an interleaved memory arrangement and an early check technique to compute the Sum of Absolute Differences. The proposed design can process High Definition (1080p) video frames in real time while optimizing the hardware area. The architecture has been implemented in verilog HDL and mapped to 45 nm FPGA. It uses only 6.8K gates for the implementation of the datapath and the controller. It achieves a maximum frequency of 120 MHz. However, working at 100 MHz, it is able to process 60 HD (\(1920\times 1080\)) frames per second while consuming 39 mW of power. The proposed architecture achieves premium speed with an optimum power and area requirements and can be suitably incorporated in light-weight video-intensive devices like smart-phones, tablet computers.


VLSI architecture FPGA Motion Estimation Modified Adaptive Rood Pattern Search Interleaved memory 


  1. 1.
    A. Akin, M. Cetin, Z. Ozcan, B. Erbagci, I. Hamzaoglu, An adaptive bilateral Motion Estimation algorithm and its hardware architecture. IEEE Trans. Consum. Electron. 58(2), 712–720 (2012)CrossRefGoogle Scholar
  2. 2.
    B. Biswas, R. Mukherjee, I. Chakrabarti, Efficient architecture of adaptive rood pattern search technique for fast motion estimation. Microprocess. Microsyst. 39(3), 200–209 (2015)CrossRefGoogle Scholar
  3. 3.
    S.K. Chatterjee, I. Chakrabarti, Low power VLSI architecture for 1-bit transformation based fast motion estimation. IEEE Trans. Consum. Electron. 56(4), 2652–2660 (2010)CrossRefGoogle Scholar
  4. 4.
    S.K. Chatterjee, I. Chakrabarti, Power efficient Motion Estimation algorithm and architecture based on pixel truncation. IEEE Trans. Consum. Electron. 57(4), 1782–1790 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Ding, X.L. Yan, Parallel architecture of motion estimation for video format conversion with center biased diamond search, in International Conference on Information Engineering and Computer Science, 2009. ICIECS 2009, pp. 1–4 (2009)Google Scholar
  6. 6.
    R. El-Ashry, M. Rehan, H. El-Kamchouchi, F. Gebali, Performance-optimized FPGA implementation for the flexible triangle search block-based motion estimation algorithm, in Proceeding of IEEE Canadian Conference on Electrical and Computer Engineering (CCECE’11), pp. 640–643 (2011)Google Scholar
  7. 7.
    Y.S. Jehng, L.G. Chen, T.D. Chiueh, An efficient and simple VLSI tree architecture for motion estimation algorithms. IEEE Trans. Signal Process. 41(2), 889–900 (1993)CrossRefGoogle Scholar
  8. 8.
    J. Kim, T. Park, A novel VLSI architecture for full-search variable block-size motion estimation. IEEE Trans. Consum. Electron. 55(2), 728–733 (2009)CrossRefGoogle Scholar
  9. 9.
    T. Koga, K. Linuma, A. Hirano, T. Ishiguro, Motion-compensated inter frame coding for video conferencing, in Proceedings of National Telecommunications Conference (NTC’81), pp. 3–5 (1981)Google Scholar
  10. 10.
    T. Komarek, P. Pirsch, Array architectures for block motion algorithms. IEEE Trans. Circuits Syst. 6(10), 1301–1308 (1989)CrossRefGoogle Scholar
  11. 11.
    K.K. Ma, G. Qiu, An improved adaptive rood pattern search for fast block-matching motion estimation in JVT/H.26L, in Proceeding of IEEE International Symposium on Circuits and Systems (ISCAS’03), pp. 708–711 (2003)Google Scholar
  12. 12.
    R. Mukherjee, B. Biswas, I. Chakrabarti, P.K. Dutta, S. Sengupta, A.K. Ray, Speed-area optimized VLSI architecture of hexagonal search algorithm for Motion Estimation of \(512\times 512\) frames. Circuits Syst. Signal Process. 36(2), 640–657 (2017)CrossRefGoogle Scholar
  13. 13.
    O. Ndili, T. Ogunfunmi, Algorithm and architecture co-design of hardware-oriented, modified diamond search for fast Motion Estimation in H. 264/AVC. IEEE Trans. Circuits Syst. Video Technol. 21(9), 1214–1227 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Nie, K.K. Ma, Adaptive rood pattern search for fast block-matching motion estimation. IEEE Trans. Image Process. 11(12), 1442–1449 (2002)CrossRefGoogle Scholar
  15. 15.
    M. Rehan, M. El-Kharashi, P. Agathoklis, F. Gebali, An fpga implementation of the flexible triangle search algorithm for block based motion estimation, in Proceeding of IEEE International Symposium on Circuits and Systems (ISCAS’06), pp. 521–524 (2006)Google Scholar
  16. 16.
    I.E.G. Richardson, Video codec design: developing image and video compression systems (John Wiley & Sons, 2002)Google Scholar
  17. 17.
    A.C. Tsai, K. Bharanitharan, J.F. Wang, K.I. Lee, Effective search point reduction algorithm and its vlsi design for HDTV H.264/AVC variable block size Motion Estimation. IEEE Trans. Circuits Syst. Video Technol. 22(7), 1214–1227 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Tseng, Y.T. Lai, M.J. Lee, A VLSI architecture for three-step search with variable block size motion vector, in Proceedings of IEEE 1st Global Conference on Consumer Electronics (GCCE’12), pp. 628–631 (2012)Google Scholar
  19. 19.
    C. Wei, H. Hui, T. Jiarong, L. Jinmei, M. Hao, A high-performance reconfigurable vlsi architecture for vbsme in H.264. IEEE Trans. Consum. Electron. 54(3), 1338–1345 (2008)CrossRefGoogle Scholar
  20. 20.
    H. Yin, D.S. Park, X.Y. Zhang, Buffer structure optimized VLSI architecture for efficient hierarchical integer pixel Motion Estimation. J. Real Time Image Process. 11(3), 507–525 (2016)CrossRefGoogle Scholar
  21. 21.
    C. Zhu, X. Lin, L. Chau, Hexagon-based search pattern for fast block Motion Estimation. IEEE Trans. Circuits Syst. Video Technol. 12(5), 349–355 (2002)CrossRefGoogle Scholar
  22. 22.
    S. Zhu, K.K. Ma, A new diamond search algorithm for fast block-matching Motion Estimation. IEEE Trans. Image Process. 9(2), 287–290 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Baishik Biswas
    • 1
  • Rohan Mukherjee
    • 1
  • Indrajit Chakrabarti
    • 1
  • Pranab Kumar Dutta
    • 2
  • Ajoy Kumar Ray
    • 1
  1. 1.Department of Electronics and Electrical Communication EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations