Skip to main content
Log in

Exponential Reduced-Order Observers for Nonlinear Systems Satisfying Incremental Quadratic Constraints

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper considers the design problem of exponential reduced-order observers for nonlinear systems satisfying incremental quadratic constraints governed by an incremental multiplier matrix. Sufficient existence conditions of the exponential full-order observers are established and formulated in terms of matrix inequalities. Then, it is shown that the conditions under which an exponential full-order observer exists also guarantee the existence of an exponential reduced-order observer. Moreover, with a proper parameterization of the multiplier matrix, the design of reduced-order observers is reduced to solving linear matrix inequalities of the Lyapunov matrix and observer gain matrices. Finally, the effectiveness of the proposed design method is illustrated by an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Abbaszadeh, H.J. Marquez, Nonlinear observer design for one-sided Lipschitz systems, in Proceedings of the 2010 American Control Conference , pp. 5284–5289 (2010)

  2. B. Açıkmeşe, M. Corless, Stability analysis with quadratic Lyapunov functions: some necessary and sufficient multiplier conditions. Syst. Control Lett. 57(1), 78–94 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Açıkmeşe, M. Corless, Observers for systems with nonlinearities satisfying incremental quadratic constraints. Automatica 47(7), 1339–1348 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Arcak, Circle-Criterion Observers and Their Feedback Applications: An Overview (Birkhäuser Boston, Boston, 2006)

    Book  Google Scholar 

  5. M. Arcak, P. Kokotović, Observer-based control of systems with slope-restricted nonlinearities. IEEE Trans. Autom. Control 46(7), 1146–1150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Arcak, P. Kokotović, Nonlinear observers: a circle criterion design and robustness analysis. Automatica 37(12), 1923–1930 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Bai, Q. Zhou, L. Wang, Z. Yu, H. Li, Observer-based adaptive control for stochastic nonstrict-feedback systems with unknown backlash-like hysteresis. Int. J. Adapt. Control Signal Process. 31, 1481–1490 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Ben-Israel, T.N.E. Greville, Generalized inverses. CMS Books Math. 34(3), 406–413 (2003)

    MATH  Google Scholar 

  9. T.N. Dinh, V. Andrieu, M. Nadri, U. Serres, Continuous-discrete time observer design for Lipschitz systems with sampled measurements. IEEE Trans. Autom. Control 60(3), 787–792 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. X. Fan, M. Arcak, Observer design for systems with multivariable monotone nonlinearities. Syst. Control Lett. 50(4), 319–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. H.K. Khalil, Noninear Systems (Prentice-Hall, Upper Saddle River, 1996)

    Google Scholar 

  12. A.J. Krener, W. Respondek, Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23(2), 197–216 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Li, Y. Gao, P. Shi, H.K. Lam, Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Autom. Control 61(9), 2745–2751 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Liu, L. Zhao, H. Xiao, C. Gao, Adaptive \(H_{\infty }\) integral sliding mode control for uncertain singular time-delay systems based on observer. Circuits Syst. Signal Process. 36(11), 4365–4387 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Magnis, N. Petit, Angular velocity nonlinear observer from vector measurements. Automatica 75, 46–53 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Phanomchoeng, R. Rajamani, Observer design for Lipschitz nonlinear systems using Riccati equations, in Proceedings of the 2010 American Control Conference pp. 6060–6065 (2010)

  17. M. Pourgholi, V.J. Majd, A nonlinear adaptive resilient observer design for a class of Lipschitz systems using LMI. Circuits Syst. Signal Process. 30(6), 1401–1415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. D.M. Raimondo, G. Roberto Marseglia, R.D. Braatz, J.K. Scott, Closed-loop input design for guaranteed fault diagnosis using set-valued observers. Automatica 74, 107–117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Rajamani, Observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 43(3), 397–401 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Selivanov, E. Fridman, Observer-based input-to-state stabilization of networked control systems with large uncertain delays. Automatica 74, 63–70 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Su, H. Wu, X. Chen, Observer-based discrete-time nonnegative edge synchronization of networked systems. IEEE Trans. Neural Networks Learn. Syst. 28(10), 2446–2455 (2017)

    Article  MathSciNet  Google Scholar 

  22. H. Su, H. Wu, X. Chen, M.Z.Q. Chen, Positive edge consensus of complex networks. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2765678

  23. F.E. Thau, Observing the state of non-linear dynamic systems. Int. J. Control 17(3), 471–479 (1973)

    Article  MATH  Google Scholar 

  24. L. Wang, M. Basin, H. Li, R. Lu, Observer-based composite adaptive fuzzy control for nonstrict-feedback systems with actuator failures. IEEE Trans. Fuzzy Syst. (2017). https://doi.org/10.1109/TFUZZ.2017.2774185

  25. Y. Wang, R. Rajamani, D.M. Bevly, Observer design for parameter varying differentiable nonlinear systems, with application to slip angle estimation. IEEE Trans. Autom. Control 62(4), 1940–1945 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Wu, R. Lu, P. Shi, H. Su, Z. Wu, Adaptive output synchronization of heterogeneous network with an uncertain leader. Automatica 76, 183–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Wu, X. Meng, L. Xie, R. Lu, H. Su, Z. Wu, An input-based triggering approach to leader-following problems. Automatica 75, 221–228 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. X. Xia, W. Gao, Nonlinear observer design by observer error linearization. SIAM J. Control Optim. 27(1), 199–216 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. W. Zhang, H. Su, H. Wang, Z. Han, Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4968–4977 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. W. Zhang, H. Su, F. Zhu, G.M. Azar, Unknown input observer design for one-sided Lipschitz nonlinear systems. Nonlinear Dyn. 79(2), 1469–1479 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. W. Zhang, H. Su, F. Zhu, S.P. Bhattacharyya, Improved exponential observer design for one-sided Lipschitz nonlinear systems. Int. J. Robust Nonlinear Control 26(18), 3958–3973 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Zhang, H. Su, F. Zhu, M. Wang, Observer-based \(H_{\infty }\) synchronization and unknown input recovery for a class of digital nonlinear systems. Circuits Syst. Signal Process. 32(6), 2867–2881 (2013)

    Article  MathSciNet  Google Scholar 

  33. Q. Zhou, H. Li, L. Wang, R. Lu, Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2738155

  34. Q. Zhou, L. Wang, C. Wu, H. Li, Adaptive fuzzy tracking control for a class of pure-feedback nonlinear systems with time-varying delay and unknown dead zone. Fuzzy Sets Syst. 329, 36–60 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Q. Zhou, D. Yao, J. Wang, C. Wu, Robust control of uncertain semi-Markovian jump systems using sliding mode control method. Appl. Math. Comput. 286, 72–87 (2016)

    MathSciNet  Google Scholar 

  36. F. Zhu, Z. Han, A note on observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 47(10), 1751–1754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 51505273, the State Key Laboratory of Robotics and System (HIT) under Grant SKLRS-2014-MS-10, the Jiangsu Provincial Key Laboratory of Advanced Robotics Fund Projects under Grant JAR201401 and the Fund of MOE Key Laboratory of Image Processing and Intelligence Control (Huazhong University of Science and Technology) under Grant No. IPIC2015-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, W., Zhang, W. et al. Exponential Reduced-Order Observers for Nonlinear Systems Satisfying Incremental Quadratic Constraints. Circuits Syst Signal Process 37, 3725–3738 (2018). https://doi.org/10.1007/s00034-018-0745-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0745-4

Keywords

Navigation