Skip to main content
Log in

Extraction of Phase Information from Magnitude-Only Bio-impedance Measurements Using a Modified Kramers–Kronig Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The need for portable and low-cost bio-impedance analyzers that can be deployed in field studies has significantly increased. Due to size and power constraints, reducing the hardware in these devices is crucial and most importantly is removing the need for direct phase measurement. In this paper a new magnitude-only technique based on modified Kramers–Kronig transforms is proposed and tested. Comparison with impedance measurements of fresh and aging tomato samples using a precise industry standard impedance analyzer is carried out and explained. Error and noise analysis of the proposed algorithm are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.A. Al-Ali, A.S. Elwakil, A. Ahmad, B.J. Maundy, Design of a portable low-cost impedance analyzer, in 10th Joint International Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017) and Biomedical Electronics and Devices (BIODEVICES-2017), vol. 1 (2017), pp. 104–109

  2. H.W. Bode, Relations between attenuation and phase in feedback amplifier design. Bell Labs Tech. J. 19(3), 421–454 (1940)

    Article  Google Scholar 

  3. H.W. Bode, et al., Network Analysis and Feedback Amplifier Design (D. Van Nostrand. Co., Inc., New York, 1945)

  4. A. Bondarenko, G. Ragoisha, Inverse Problem in Potentiodynamic Electrochemical Impedance (Nova Science Publishers, New York, 2005). http://www.abc.chemistry.bsu.by/vi/

  5. L. Breniuc, V. David, C.-G. Haba, Wearable impedance analyzer based on AD5933, in 2014 International Conference and Exposition on Electrical and Power Engineering (EPE) (2014), pp. 585–590

  6. K. Chabowski, T. Piasecki, A. Dzierka, K. Nitsch, Simple wide frequency range impedance meter based on AD5933 integrated circuit. Metrol. Meas. Syst. 22(1), 13–24 (2015)

    Article  Google Scholar 

  7. C.T.-S. Ching, W.-Y. Chih, Design and evaluation of an affordable and programmable mobile device, capable of delivering constant current and high voltage electric pulses of different waveforms for biomedical and clinical applications. Sens. Actuators B: Chem. 194, 361–370 (2014)

    Article  Google Scholar 

  8. C.T.-S. Ching, T.-P. Sun, W.-T. Huang, S.-H. Huang, C.-S. Hsiao, K.-M. Chang, A circuit design of a low-cost, portable and programmable electroporation device for biomedical applications. Sens. Actuators B: Chem. 166, 292–300 (2012)

    Article  Google Scholar 

  9. A. Devices, 1 MSPS, 12-Bit Impedance Converter, Network Analyzer AD5933 Datasheet. Rev. E (2013)

  10. W. Ehm, H. Gohr, R. Kaus, B. Roseler, C. Schiller, The evaluation of electrochemical impedance spectra using a modified logarithmic Hilbert transform. ACH-Models Chem. 137(2–3), 145–157 (2000)

    Google Scholar 

  11. J.M. Esteban, M.E. Orazem, On the application of the Kramers–Kronig relations to evaluate the consistency of electrochemical impedance data. J. Electrochem. Soc. 138(1), 67–76 (1991)

    Article  Google Scholar 

  12. T.J. Freeborn, B. Maundy, A.S. Elwakil, Extracting the parameters of the double-dispersion Cole bioimpedance model from magnitude response measurements. Med. Biol. Eng. Comput. 52(9), 749–758 (2014)

    Article  Google Scholar 

  13. P. Grosse, V. Offermann, Analysis of reflectance data using the Kramers–Kronig relations. Appl. Phys. A 52(2), 38–144 (1991)

    Article  Google Scholar 

  14. S.L. Hahn, Hilbert Transforms in Signal Processing (Artech House, Norwood, 1996)

    MATH  Google Scholar 

  15. J. Hoja, G. Lentka, A family of new generation miniaturized impedance analyzers for technical object diagnostics. Metrol. Meas. Syst. 20(1), 43–52 (2013)

    Article  Google Scholar 

  16. D. Jamaludin, S.A. Aziz, D. Ahmad, H.Z. Jaafar, Impedance analysis of Labisia Pumila plant water status. Inf. Process. Agric. 2(3), 161–168 (2015)

    Google Scholar 

  17. Y.-H. Kim, J.-S. Park, H.-I. Jung, An impedimetric biosensor for real-time monitoring of bacterial growth in a microbial fermentor. Sens. Actuators B: Chem. 138(1), 270–277 (2009)

    Article  Google Scholar 

  18. F.W. King, Hilbert Transforms, vol. 2 (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  19. R.D.L. Kronig, On the theory of dispersion of X-rays. J. Opt. Soc. Am. 12(6), 547–557 (1926)

    Article  Google Scholar 

  20. C. Leon, J. Martin, J. Sanatamaria, J. Skarp, G. Gonzalez-Diaz, F. Sanchez-Quesada, Use of Kramers–Kronig transforms for the treatment of admittance spectroscopy data of p–n junctions containing traps. J. Appl. Phys. 79(10), 7830–7836 (1996)

    Article  Google Scholar 

  21. D.D. Macdonald, M. Urquidi-Macdonald, Application of Kramers–Kronig transforms in the analysis of electrochemical systems I. Polarization resistance. J. Electrochem. Soc. 132(10), 2316–2319 (1985)

    Article  Google Scholar 

  22. B. Maundy, A. Elwakil, A. Allagui, Extracting the parameters of the single-dispersion Cole bioimpedance model using a magnitude-only method. Comput. Electron. Agric. 119(C), 153–157 (2015)

    Article  Google Scholar 

  23. T. Mehra, V. Kumar, P. Gupta, Maturity and disease detection in tomato using computer vision, in IEEE International Conference on Parallel, Distributed and Grid Computing, pp. 399–403 (2016)

  24. Newton 4th LTD, U., IAI Impedance Analysis Interface User Manual (2015)

  25. S. Papezova, Signal processing of bioimpedance equipment. Sens. Actuators B: Chem. 95(1–3), 328–335 (2003)

    Article  Google Scholar 

  26. T. Piasecki, K. Chabowski, K. Nitsch, Design, calibration and tests of versatile low frequency impedance analyser based on ARM microcontroller. Measurement 91, 155–161 (2016)

    Article  Google Scholar 

  27. T. Pritz, Unbounded complex modulus of viscoelastic materials and the Kramers–Kronig relations. J. Sound Vib. 279(3–5), 687–697 (2005)

    Article  Google Scholar 

  28. T. Radil, P.M. Ramos, A.C. Serra, DSP based portable impedance measurement instrument using sine-fitting algorithms, in 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings, vol. 2 (2005), pp. 1018–1022

  29. T. Radil, P.M. Ramos, A.C. Serra, Impedance measurement with sine-fitting algorithms implemented in a DSP portable device. IEEE Trans. Instrum. Meas. 57(1), 197–204 (2008)

    Article  Google Scholar 

  30. P.M. Ramos, F.M. Janeiro, Implementation of DSP based algorithms for impedance measurements, in IEEE International Conference on Signal Processing and Communications, ICSPC2007 (2007), pp. 816–819

  31. P.M. Ramos, F.M. Janeiro, T. Radil, Comparison of impedance measurements in a DSP using ellipse-fit and seven-parameter sine-fit algorithms. Measurement 42(9), 1370–1379 (2009)

    Article  Google Scholar 

  32. E.J. Rose, D. Pamela, K. Rajasekaran, Apple vitality detection by impedance measurement. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 9, 144–148 (2013)

    Google Scholar 

  33. F. Seone, I. Mochino-Herranz, J. Ferreira, L. Alvarez, R. Buendia, D. Ayllon, C. Llerena, R. Gil-Pita, Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 14, 7120–7141 (2014)

    Article  Google Scholar 

  34. H. Shih, F. Mansfeld, Concerning the use of the Kramers–Kronig transforms for the validation of impedance data. Corros. Sci. 28(9), 933–938 (1988)

    Article  Google Scholar 

  35. H. Shih, F. Mansfeld, Should the Kramers–Kronig transforms be used for the validation of experimental impedance data. Corrosion 45(4), 325–327 (1989)

    Article  Google Scholar 

  36. V. Shtrauss, FIR Kramers–Kronig transformers for relaxation data conversion. Signal Process. 86(10), 2887–2900 (2006)

    Article  MATH  Google Scholar 

  37. M. Simic, Realization of complex impedance measurement system based on the integrated circuit AD5933, in 21st Telecommunications Forum (TELFOR) (2013), pp. 573–576

  38. V.A. Tyagal, G.Y. Kolbasove, Use of the Kreamers–Kronig experssions for the analysis of low-frequency impedance. J. Electrochem. Soc. 8, 54–56 (1972)

    Google Scholar 

  39. M. Urquidi-Macdonald, S. Real, D.D. Macdonald, Application of Kramers–Kronig transforms in the analysis of electrochemical systems II. Transformations in the complex plane. J. Electrochem. Soc. 133(10), 2018–2024 (1986)

    Article  Google Scholar 

  40. M. Urquidi-Macdonald, S. Real, D.D. Macdonald, Applications of Kramers–Kronig transforms in the analysis of electrochemical impedance data III. Stability and linearity. Electrochim. Acta 35(10), 1559–1566 (1990)

    Article  Google Scholar 

  41. V. Valente, A. Demosthenous, Wideband fully-programmable dual-mode CMOS analogue front-end for electrical impedance spectroscopy. Sensors 6(8), 1159–1179 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the Natural Sciences and Engineering Research Council (NSERC, Canada) in the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Elwakil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ali, A.A., Elwakil, A.S., Maundy, B.J. et al. Extraction of Phase Information from Magnitude-Only Bio-impedance Measurements Using a Modified Kramers–Kronig Transform. Circuits Syst Signal Process 37, 3635–3650 (2018). https://doi.org/10.1007/s00034-017-0727-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0727-y

Keywords

Navigation