Novel CMOS Dual-X Current Conveyor Transconductance Amplifier Realization with Current-Mode Multifunction Filter and Quadrature Oscillator

Article

Abstract

This paper presents a novel active element, namely dual-X current conveyor transconductance amplifier. The CMOS implementation, parasitic model and characteristic performance parameters of the proposed dual-X current conveyor transconductance amplifier have been explored. The proposed active element has the advantages of good operational bandwidth, good dynamic range and low power consumption. Additionally, current-mode multifunction filter and quadrature oscillator are proposed to examine the applicability of the newly proposed active element. The proposed current-mode multifunction filter provides the responses, low-pass, high-pass and band-pass simultaneously without any circuit modification. The proposed quadrature oscillator circuit simultaneously generates three current outputs and three voltage outputs. The non-ideal analyses of both current-mode multifunction filter and quadrature oscillator are also included. Moreover, the active and passive sensitivities of both current-mode multifunction filter and quadrature oscillator are calculated which are found to be less than unity in magnitude. HSPICE simulation results are depicted to confirm the theoretical analyses. Moreover, practicality of novel dual-X current conveyor transconductance amplifier is examined through the experimental results of the proposed quadrature oscillator.

Keywords

DXCCTA Current-mode Multifunction filter Quadrature oscillator 

Notes

Acknowledgements

The authors are thankful to the anonymous reviewers for their useful feedback which helps in the enrichment of the paper. The authors are also thankful to the Associate Editor and Editor-in-Chief for recommending this paper.

References

  1. 1.
    P. Beg, S. Maheshwari, Generalized filter topology using grounded components and single novel active element. Circuits Syst. Signal Process. 33(11), 3603–3619 (2014)CrossRefGoogle Scholar
  2. 2.
    D. Biolek, CDTA-building block for current-mode analog signal processing. In Proceedings of the European Conference on Circuit Theory and Design 2003—ECCTD’03, Krakow (2003), pp. 397–400Google Scholar
  3. 3.
    D. Biolek, R. Senani, V. Biolkova et al., Active elements for analog signal processing: classification, review, and proposals. Radioengineering 17(4), 15–32 (2008)Google Scholar
  4. 4.
    B. Chaturvedi, S. Maheshwari, Current mode biquad filter with minimum component count. Active Passive Electron. Compon. 2011, 391642 (2011). doi: 10.1155/2011/391642
  5. 5.
    B. Chaturvedi, S. Maheshwari, Second order mixed mode quadrature oscillator using DVCCS and grounded components. Int. J. Comput. Appl. 58(2), 42–45 (2012)Google Scholar
  6. 6.
    B. Chaturvedi, J. Mohan, Single active element based mixed-mode quadrature oscillator using grounded components. IU-JEE 15(1), 1897–1906 (2015)Google Scholar
  7. 7.
    W. Chiu, S.I. Liu, H.W. Tsao, J.J. Chen, CMOS differential difference current conveyor and their applications. IEE Proc. Circuits Devices Syst. 143(2), 91–96 (1996)CrossRefMATHGoogle Scholar
  8. 8.
    H.O. Elwan, A.M. Soliman, Novel CMOS differential voltage current conveyor and its applications. IEE Proc. Circuits Devices Syst. 144(3), 195–200 (1997)CrossRefGoogle Scholar
  9. 9.
    G. Ferri, N.C. Guerrini, Low-Voltage Low Power CMOS Current Conveyors (Springer Science and Business Media, Berlin, 2003)Google Scholar
  10. 10.
    Y.H. Ghallab, W. Badawy et al., The operational floating current conveyor and its applications. J. Circuits Syst. Comput. 15(3), 351–372 (2006)CrossRefGoogle Scholar
  11. 11.
    W. Jaikla, M. Siripruchyanun, Current controlled current differencing transconductance amplifier (CCCDTA): a new building block and its applications. In Proceedings of ECTI Conference (2006), pp. 348–351Google Scholar
  12. 12.
    A. Jantakun, N. Pisutthipong, M. Siripruchyanun, A synthesis of temperature insensitive/electronically controllable floating simulators based on DV-CCTAs. In Proceedings of the 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, (ECTI-CON 2009) (2009), pp. 560–563Google Scholar
  13. 13.
    J. Jin, C. Wang, Single CDTA-based current-mode quadrature oscillator. AEU Int. J. Electron. Commun. 66(11), 933–936 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Jin, C. Wang, Current-mode universal filter and quadrature oscillator using CDTAs. Turk. J. Electr. Eng. Comput. Sci. 22, 276–286 (2014)CrossRefGoogle Scholar
  15. 15.
    K. Kaewdang, W. Surakampontorn, On the realization of electronically current-tunable CMOS OTA. AEU Int. J. Electron. Commun. 61(5), 300–306 (2007)CrossRefGoogle Scholar
  16. 16.
    A.U. Keskin, D. Biolek, E. Hancioglu, V. Biolkova, Current-mode KHN filter employing current differencing transconductance amplifiers. AEU Int. J. Electron. Commun. 60(6), 443–446 (2006)CrossRefGoogle Scholar
  17. 17.
    A. Kumar, B. Chaturvedi, A novel MO-DXCCII based CMQO operated at low voltage. Grenze Int. J. Eng. Technol. 2(2), 9–17 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Kumar, B. Chaturvedi, Novel CMOS CFDITA and its application as electronically-tunable bistable multivibrator. In IEEE International Conference on Signal Processing and Communication (ICSC-2016) (2016), pp. 374–379Google Scholar
  19. 19.
    A. Kumar, B. Chaturvedi, Novel CMOS current inverting differential input transconductance amplifier and its application. J. Circuits Syst. Comput. 26(1), 16 (2017)CrossRefGoogle Scholar
  20. 20.
    A. Kumar, B. Chaturvedi, Single active element based tunable square/triangular wave generator with grounded passive components. Circuits Syst. Signal Process. 36, 3875–3900 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Kumar, B. Chaturvedi, Fully electronically controllable Schmitt trigger circuit with dual hysteresis. Electron. Lett. 53, 459–461 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Kumar, B. Chaturvedi, S. Maheshwari, A fully electronically controllable Schmitt trigger and duty cycle modulated waveform generator. Int. J. Circuit Theory Appl. (2017). doi: 10.1002/cta.2307 Google Scholar
  23. 23.
    Y.A. Li, Electronically tunable current-mode biquadratic filter and four-phase quadrature oscillator. Microelectron. J. 45(3), 330–335 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Maheshwari, New voltage and current-mode APS using current controlled conveyor. Int. J. Electron. 91(12), 735–743 (2004)CrossRefGoogle Scholar
  25. 25.
    S. Maheshwari, I.A. Khan, Novel single resistor controlled quadrature oscillator using two CDBAs. J. Active Passive Electron. Devices 2(2), 137–142 (2007)Google Scholar
  26. 26.
    S. Maheshwari, High output impedance current-mode all-pass sections with two grounded passive components. IET Circuits Devices Syst. 2(2), 234–242 (2008)CrossRefGoogle Scholar
  27. 27.
    S. Maheshwari, B. Chaturvedi, High output impedance CMQO using DVCCs and grounded components. Int. J. Circuit Theory Appl. 39, 427–435 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Maheshwari, M.S. Ansari, Catalog of realizations for DXCCII using commercially available ICs and applications. Radioengineering 21(1), 281–289 (2012)Google Scholar
  29. 29.
    S. Maheshwari, B. Chaturvedi, High-input low-output impedance all-pass filters using one active element. IET Circuits Devices Syst. 6(2), 103–110 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Maheshwari, Sinusoidal generator with \(\pi \)/4-shifted four/eight voltage outputs employing four grounded components and two/six active elements. Active Passive Electron. Compon. 2014, 480590 (2014). doi: 10.1155/2014/480590
  31. 31.
    J. Mohan, B. Chaturvedi, S. Maheshwari, Low voltage mixed-mode multi phase oscillator using single FDCCII. Electronics 20(1), 36–42 (2016)Google Scholar
  32. 32.
    S. Minaei, E. Yuce, Current-mode active-C filter employing reduced number of CCCII+s. J. Circuits Syst. Comput. 16(4), 507–516 (2007)CrossRefGoogle Scholar
  33. 33.
    N. Pandey, S.K. Paul, VM and CM universal filters based on single DVCCTA. Active Passive Electron. Compon. 2011, 929507 (2011). doi: 10.1155/2011/929507
  34. 34.
    N. Pandey, S.K. Paul, Differential difference current conveyor transconductance amplifier: a new building block for signal processing. J. Electr. Comput. Eng. 2011, 361384 (2011). doi: 10.1155/2011/361384
  35. 35.
    D. Prasad, D.R. Bhaskar, A.K. Singh, Universal current-mode biquad filter using dual output current differencing transconductance amplifier. AEU Int. J. Electron. Commun. 63(6), 497–501 (2009)CrossRefGoogle Scholar
  36. 36.
    R. Prokop, V. Musil, CCTA—a new modern circuit block and its internal realization. In Proceedings of the International Conference on Electronic Devices and Systems, (IMAPSCZ ’05), Brno, Czech Republic (2005), pp. 89–93Google Scholar
  37. 37.
    M. Sagbas, U.E. Ayten, H. Sedef, Current and voltage transfer function filters using a single active device. IET Circuits Devices Syst. 4(1), 78–86 (2010)CrossRefGoogle Scholar
  38. 38.
    J. Satansup, W. Tangsrirat, Compact VDTA-based current-mode electronically tunable universal filters using grounded capacitors. Microelectron. J. 45(6), 613–618 (2014)CrossRefGoogle Scholar
  39. 39.
    A.S. Sedra, K.C. Smith, A second-generation current conveyor and its applications. IEEE Trans. Circuit Theory 17, 132–134 (1970)CrossRefGoogle Scholar
  40. 40.
    R.K. Sharma, R. Senani, Universal current mode biquad using CFOA. Int. J. Electron. 91(3), 175–183 (2004)CrossRefGoogle Scholar
  41. 41.
    S.V. Singh, S. Maheshwari, Current-processing current-controlled universal biquad filter. Radioengineering 21(1), 317–323 (2012)Google Scholar
  42. 42.
    S.V. Singh, S. Maheshwari, D.S. Chauhan, Single MO-CCCCTA-based electronically tunable current/trans-impedance-mode biquad universal filter. Circuits Syst. 2(1), 1–6 (2011)CrossRefGoogle Scholar
  43. 43.
    M. Siripruchyanun, W. Jaikla, Electronically controllable current-mode universal biquad filter using DO-CCCDTA. Circuits Syst. Signal Process. 27(1), 113–122 (2008)CrossRefGoogle Scholar
  44. 44.
    M. Siripruchyanun, W. Jaikla, Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing. Electr. Eng. 90(6), 443–453 (2008)CrossRefGoogle Scholar
  45. 45.
    W. Tangsrirat, Single-input three-output electronically tunable universal current-mode filter using current follower transconductance amplifiers. AEU Int. J. Electron. Commun. 65(10), 783–787 (2011)CrossRefGoogle Scholar
  46. 46.
    N. Walde, S.N. Ahmad, Realization of a new current mode second-order biquad using two current follower transconductance amplifiers (CFTAs). Circuits Syst. 6(5), 113–120 (2015)CrossRefGoogle Scholar
  47. 47.
    J. Xu, C. Wang, J. Jin et al., Low-voltage high linearity wideband current differencing transconductance amplifier and its application on current-mode active filter. Radioengineering 23(1), 512–522 (2014)Google Scholar
  48. 48.
    E. Yuce, A. Kircay, S. Tokat, Universal resistorless current-mode filters employing CCCIIs. Int. J. Circuit Theory Appl. 36, 739–755 (2008)CrossRefMATHGoogle Scholar
  49. 49.
    E. Yuce, S. Minaei, O. Cicekoglu, Universal current-mode active-C filter employing minimum number of passive elements. Analog Integr. Circuit Signal Process. 46(2), 169–171 (2006)CrossRefMATHGoogle Scholar
  50. 50.
    A. Zeki, A. Toker, The dual-X current conveyor (DXCCII): a new active device for tunable continuous-time filters. Int. J. Electron. 89(12), 913–923 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations