Abstract
The results obtained in this article aim at analyzing Bogdanov–Takens bifurcation in a predator–prey model with an age structure for the predator. Firstly, we give the existence result of the Bogdanov–Takens singularity. Then we describe the bifurcation behavior of the parameterized predator–prey model with Bogdanov–Takens singularity.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.



References
- 1.
Andrews, J.F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10, 707–723 (1968)
- 2.
Ashwin, P., Mei, Z.: Normal form for Hopf bifurcation of partial differential equations on the square. Nonlinearity 8, 715–734 (1995)
- 3.
Castellanos, V., Llibre, J., Quilantan, I.: Simultaneous periodic orbits bifurcating from two zero-Hopf equilibria in a tritrophic food chain model. J.f Appl. Math. Phys. 1(07), 31 (2013)
- 4.
Chen, J., Huang, J., Ruan, S., Wang, J.: Bifurcations of invariant tori in predator–prey models with seasonal prey harvesting. SIAM J. Appl. Math. 73(5), 1876–1905 (2013)
- 5.
Chow, S., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)
- 6.
Chow, S.-N., Lu, K., Shen, Y.-Q.: Normal forms for quasiperiodic evolutionary equations. Discrete Contin. Dyn. Syst. 2, 65–94 (1996)
- 7.
Cushing, J.M.: An Introduction to Structured Population Dynamics. SIAM, Philadelphia (1998)
- 8.
Ducrot, A., Liu, Z., Magal, P.: Essential growth rate for bounded linear perturbation of non densely defined Cauchy problems. J. Math. Anal. Appl. 341, 501–518 (2008)
- 9.
Eckmann, J.-P., Epstein, H., Wayne, C.E.: Normal forms for parabolic partial differential equations. Ann. Inst. Henri Poincaré Phys. Théor. 58, 287–308 (1993)
- 10.
Faou, E., Grébert, B., Paturel, E.: Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. I. Finite-dimensional discretization. Numer. Math. 114, 429–458 (2010)
- 11.
Faou, E., Grébert, B., Paturel, E.: Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. II. Abstract splitting. Numer. Math. 114, 459–490 (2010)
- 12.
Faria, T.: Normal forms and Hopf bifurcation for partial differential equations with delays. Trans. Am. Math. Soc. 352, 2217–2238 (2000)
- 13.
Faria, T.: Normal forms for semilinear functional differential equations in Banach spaces and applications, Part II. Discrete Contin. Dyn. Syst. 7, 155–176 (2001)
- 14.
Faria, T., Magalhães, L.T.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcations. J. Differ. Equ. 122, 181–200 (1995)
- 15.
Foias, C., Hoang, L., Olson, E., Ziane, M.: On the solutions to the normal form of the Navier–Stokes equations. Indiana Univ. Math. J. 55, 631–686 (2006)
- 16.
Guckenheimer, J., Holmes, P.: Nonlinear oscillations, Dynamical Systems, and Bifurcations of Vector Field, vol. 42. Springer, Berlin (2013)
- 17.
Haragus, M., Iooss, G.: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems. Springer, Berlin (2010)
- 18.
Hassard, B.D., Kazarinoff, N.D., Wan, Y.-H.: Theory and Applications of Hopf Bifurcaton, London Math. Soc. Lect. Note Ser. ,vol. 41. Cambridge Univesity Press, Cambridge (1981)
- 19.
Huang, J., Ruan, S., Song, J.: Bifurcations in a predator–prey system of Leslie type with generalized Holling type III functional response. J. Differ. Equ. 257(6), 1721–1752 (2014)
- 20.
Huang, J., Liu, S., Ruan, S., Zhang, X.: Bogdanov–Takens bifurcation of co-dimension 3 in a predator–prey model with constant-yield predator harvesting. Commun. Pure Appl. Anal. 15(3), 1041–1055 (2016)
- 21.
Huang, J., Xia, X., Zhang, X., Ruan, S.: Bifurcation of co-dimension 3 in a predator-prey system of Leslie type with simplified Holling type IV functional response. Int. J. Bifurc. Chaos 26(02), 1650034 (2016)
- 22.
Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics. Appl. Math. Monographs C. N. R. 7, Giadini Editori e Stampatori, Pisa (1994)
- 23.
Inaba, H.: Age-Structured Population Dynamics in Demography and Epidemiology. Springer, New York (2017)
- 24.
Kokubu, H.: Normal forms for parametrized vector fields and its application to bifurcations of some reaction–diffusion equations. Jpn. J. Appl. Math. 1, 273–297 (1984)
- 25.
Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, vol. 112. Springer, New York (1995)
- 26.
Liu, Z., Magal, P., Ruan, S.: Projectors on the generalized eigenspaces for functional differential equations using integrated semigroups. J. Differ. Equ. 244, 1784–1809 (2008)
- 27.
Liu, Z., Magal, P., Ruan, S.: Normal forms for semilinear equations with non-dense domain with applications to age structured models. J. Differ. Equ. 257, 921–1011 (2014)
- 28.
Liu, Z., Magal, P., Xiao, D.: Bogdanov–Takens bifurcation in a predator–prey model. Z. Angew. Math. Phys. 67, 137 (2016)
- 29.
Magal, P., Ruan, S.: Theory and Applications of Abstract Semilinear Cauchy Problems, Applied Mathematical Sciences, vol. 201. Springer, Berlin (2018)
- 30.
McKean, H.P., Shatah, J.: The nonlinear Schrödinger equation and the nonlinear heat equation—reduction to linear form. Commun. Pure Appl. Math. XLIV, 1067–1080 (1991)
- 31.
Nikolenko, N.V.: The method of Poincaré normal forms in problems of integrability of equations of evolution type. Russ. Math. Surv. 41, 63–114 (1986)
- 32.
Pang, P.Y., Wang, M.: Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion. Proc. Lond. Math. Soc. 88(1), 135–157 (2004)
- 33.
Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)
- 34.
Ruan, S., Xiao, D.: Global analysis in a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2001)
- 35.
Shatah, J.: Normal forms and quadratic nonlinear Klein–Gordon equations. Comm. Pure Appl. Math. XXXVII I, 685–696 (1985)
- 36.
Thieme, H.R.: Quasi-compact semigroups via bounded perturbation. In: Advances in Mathematical Population Dynamics-Molecules, Cells and Man, Houston, TX, 1995, in: Ser. Math. Biol. Med., vol. 6. World Sci. Publishing, River Edge, NJ, pp. 691–711 (1997)
- 37.
Thieme, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ. Integr. Equ. 3, 1035–1066 (1990)
- 38.
Vanderbauwhede, A., Iooss, G.: Center manifold theory in infinite dimensions. In: Jones, C.K.R.T., Kirchgraber, U., Walther, H.O. (eds.) Dynamics Reported—New Series, vol. 1, pp. 125–163. Springer, Berlin (1992)
- 39.
Webb, G.F.: Theory of Nonlinear Age-dependent Population Dynamics. Marcel Dekker, New York (1985)
- 40.
Xiao, D., Ruan, S.: Global analysis in a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61(4), 1445–1472 (2001)
- 41.
Xiao, D., Ruan, S.: Multiple bifurcations in a delayed predator–prey system with non monotonic functional response. J. Differ. Equ. 176(2), 494–510 (2001)
- 42.
Yuan, R., Jiang, W., Wang, Y.: Saddle-node-Hopf bifurcation in a modified Leslie–Gower predator-prey model with time-delay and prey harvesting. J. Math. Anal. Appl. 422(2), 1072–1090 (2015)
- 43.
Zehnder, E.: A simple proof of a generalization of a theorem by C. L. Siegel. In: Palis, J., do Carmo, M. (eds.) Geometry and Topology, Lecture Notes in Mathematics, vol. 597, pp. 855–866. Springer, Berlin (1977)
- 44.
Zehnder, E.: C. L. Siegel’s linearization theorem in infinite dimensions. Manuscr. Math. 23, 363–371 (1978)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Research was partially supported by National Natural Science Foundation of China (Grant Nos. 11871007 and 11811530272) and the Fundamental Research Funds for the Central Universities.
Rights and permissions
About this article
Cite this article
Liu, Z., Magal, P. Bogdanov–Takens bifurcation in a predator–prey model with age structure. Z. Angew. Math. Phys. 72, 4 (2021). https://doi.org/10.1007/s00033-020-01434-1
Received:
Revised:
Accepted:
Published:
Keywords
- Non-densely defined Cauchy problems
- Normal form
- Bogdanov–Takens bifurcation
- Homoclinic orbit
- Hopf bifurcation
- Predator–prey model
- Age structure
Mathematics Subject Classification
- 34K18
- 37L10
- 37L15
- 35K90
- 37G10
- 92D25