Global existence and boundedness of a chemotaxis model with indirect production and general kinetic function


This paper is devoted to the chemotaxis model with indirect production and general kinetic function

$$\begin{aligned} \left\{ \begin{aligned}&u_t=\Delta u-\chi \nabla \cdot (u\nabla v)+f(u),\qquad&x\in \Omega ,\,t>0,\\&v_t=\Delta v-v+w,\qquad&x\in \Omega ,\,t>0,\\&\tau w_t+\lambda w=g(u),\qquad&x\in \Omega ,\,t>0, \end{aligned} \right. \end{aligned}$$

in a bounded domain \(\Omega \subset \mathbb {R}^n(n\le 3)\) with smooth boundary \(\partial \Omega \), where \(\chi , \tau , \lambda \) are given positive parameters, f and g are known functions. We find several explicit conditions involving the kinetic function f, g, the parameters \(\chi \), \(\lambda \), and the initial data \(\Vert u_0\Vert _{L^1(\Omega )}\) to ensure the global-in-time existence and uniform boundedness for the corresponding 2D/3D Neumann initial-boundary value problem. Particularly, when \(f\equiv 0\), and g is a linear function, the global bounded classical solutions to the corresponding 2D Neumann initial-boundary value problem with arbitrarily large initial data and chemotactic sensitivity are established. Our results partially extend the results of Hu and Tao (Math Models Methods Appl Sci 26:2111–2128, 2016), Tao and Winkler (J Eur Math Soc 19:3641–3678, 2017), etc.

This is a preview of subscription content, log in to check access.


  1. 1.

    Strohm, S., Tyson, R.C., Powell, J.A.: Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data. Bull. Math. Biol. 75, 1778–1797 (2013)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Espejo, E., Winkler, M.: Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier–Stokes system modeling coral fertilization. Nonlinearity 31, 1227–1259 (2018)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Li, X.: Global classical solutions in a Keller–Segel (Navier)–Stokes system modeling coral fertilization. J. Differ. Equ. 267, 6290–6315 (2019).

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Nagai, T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two dimensional domains. J. Inequal. Appl. 6(1), 37–55 (2001)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40(3), 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Normale Superiore 24(4), 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12(2), 159–177 (2001)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100(5), 748–767 (2013)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attracktor for a chemotaxis-growth system of equations. Nonlinear Anal. Theory Methods Appl. 51(1), 119–144 (2002)

    Article  Google Scholar 

  10. 10.

    Osaki, K., Yagi, A.: Finite dimensional attractors for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44(3), 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Osaki, K., Yagi, A.: Global existence for a chemotaxis-growth system in $\mathbb{R}^2$. Adv. Math. Sci. Appl. 12(2), 587–606 (2002)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66(5), 2555–2573 (2015)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Par. Differ. Equ. 35(8), 1516–1537 (2010)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Xiang, T.: How strong a logistic damping can prevent blow-up for the minimal Keller–Segel chemotaxis system? J. Math. Anal. Appl. 459, 1172–1200 (2018)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Winkler, M.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differ. Equ. 258(4), 1158–1191 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Xiang, T.: Sub-logistic source can prevent blow-up in the 2D minimal Keller–Segel chemotaxis system. J. Math. Phys. 59, 081502 (2018).

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Li, X.: On a fully parabolic chemotaxis system with nonlinear signal secretion. Nonlinear Anal. Real World Appl. 49, 24–44 (2019).

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Hu, B., Tao, Y.: To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production. Math. Models Methods Appl. Sci. 26, 2111–2128 (2016)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Tao, Y., Winkler, M.: Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J. Eur. Math. Soc. (JEMS) 19(12), 3641–3678 (2017)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Fujie, K., Senba, T.: Application of an Adams type inequality to a two-chemical substances chemotaxis system. J. Differ. Equ. 263(1), 88–148 (2017)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46, 1969–2007 (2014)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Tao, Y., Wang, M.: Global solution for a chemotactic-haptotactic model of cancer invasion. Nonlinearity 21, 2221–2238 (2008)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Tao, Y., Winkler, M.: A chemotaxis Chaptotaxis model: the roles of porous medium diffusion and logistic source. SIAM J. Math. Anal. 43, 685–704 (2011)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)

    Google Scholar 

  25. 25.

    Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Super. Pisa Cl. Sci. Fis. Ser. 3(20), 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Kowalczyk, R., Szymańska, Z.: On the global existence of solutions to an aggregation model. J. Math. Anal. Appl. 343, 379–398 (2008)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller–Segel System. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 851–875 (2014)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Haroske, D.D., Triebel, H.: Distributions, Sobolev Spaces, Elliptic Equations. European Mathematical Society, Zurich (2008)

    Google Scholar 

Download references


The author would like to express her thanks to Professor Michael Winkler and the anonymous reviewer for their valuable suggestions, which greatly improved the exposition of this paper. This work was supported by the National Natural Science Foundation of China (No. 11701461) and the Postdoctoral Science Foundation of China (Nos. 2017M622990, 2018T110956).

Author information



Corresponding author

Correspondence to Xie Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X. Global existence and boundedness of a chemotaxis model with indirect production and general kinetic function. Z. Angew. Math. Phys. 71, 117 (2020).

Download citation

Mathematics Subject Classification

  • 35A01
  • 35B40
  • 35B45
  • 35Q92
  • 92C17


  • Chemotaxis
  • Indirect signal production
  • Kinetic function
  • Global existence
  • Boundedness