Skip to main content
Log in

Existence and concentration of nontrivial nonnegative ground state solutions to Kirchhoff-type system with Hartree-type nonlinearity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A Kirchhoff-type fractional elliptic system with Hartree-type nonlinearity is proposed to provide a unified framework for well-known nonlinear Schrödinger equations, Kirchhoff equations and Schrödinger–Poisson systems. The existence of nontrivial nonnegative ground state solutions to the system is proved when the coefficient of the potential function is larger than a threshold value, and a precise estimate of the threshold value is given for a prototypical example. It is also shown that the ground state solution concentrates on the zero set of the potential function when the coefficient tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Volume 140 of Pure and Applied Mathematics (Amsterdam), 2nd edn. Elsevier, Amsterdam (2003)

    Google Scholar 

  2. Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49(1), 85–93 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140(3), 285–300 (1997)

    Article  MATH  Google Scholar 

  4. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger–Poisson problem. Commun. Contemp. Math. 10(3), 391–404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Klein–Gordon–Maxwell equations. Topol. Methods Nonlinear Anal. 35(1), 33–42 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3(4), 549–569 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R}}^N\). Commun. Partial Differ. Equ. 20(9–10), 1725–1741 (1995)

    MATH  Google Scholar 

  8. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11(2), 283–293 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165(4), 295–316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134(5), 893–906 (2004)

    Article  MATH  Google Scholar 

  11. Figueiredo, G.M.: Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl. 401(2), 706–713 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Figueiredo, G.M., Ikoma, N., Santos Júnior, J.R.: Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213(3), 931–979 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gui, C.F.: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Commun. Partial Differ. Equ. 21(5–6), 787–820 (1996)

    Article  MATH  Google Scholar 

  15. He, X.M., Zou, W.M.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70(3), 1407–1414 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R}}^3\). J. Differ. Equ. 252(2), 1813–1834 (2012)

    MATH  Google Scholar 

  17. He, Y.: Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity. J. Differ. Equ. 261(11), 6178–6220 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, Y., Li, G.B.: Standing waves for a class of Kirchhoff type problems in \({\mathbb{R}}^{3}\) involving critical Sobolev exponents. Calc. Var. Partial Differ. Equ. 54(3), 3067–3106 (2015)

    MATH  Google Scholar 

  19. He, Y., Li, G.B., Peng, S.J.: Concentrating bound states for Kirchhoff type problems in \({\mathbb{R}}^3\) involving critical Sobolev exponents. Adv. Nonlinear Stud. 14(2), 483–510 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Ianni, I., Ruiz, D.: Ground and bound states for a static Schrödinger–Poisson–Slater problem. Commun. Contemp. Math. 14(1), 1250003 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin, J.H., Wu, X.: Infinitely many radial solutions for Kirchhoff-type problems in \({\mathbb{R}}^N\). J. Math. Anal. Appl. 369(2), 564–574 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Kirchhoff, G.: Vorlesungen über Mathematische Physik. BG Teubner, Stuttgart (1876)

    MATH  Google Scholar 

  23. Li, F.Y., Li, Y.H., Shi, J.P.: Existence of positive solutions to Schrödinger–Poisson type systems with critical exponent. Commun. Contemp. Math. 16(6), 1450036 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, G.B., Peng, S.J., Yan, S.S.: Infinitely many positive solutions for the nonlinear Schrödinger–Poisson system. Commun. Contemp. Math. 12(6), 1069–1092 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, G.B., Ye, H.Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R}}^3\). J. Differ. Equ. 257(2), 566–600 (2014)

    MATH  Google Scholar 

  26. Li, Y.H., Li, F.Y., Shi, J.P.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253(7), 2285–2294 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y.H., Li, F.Y., Shi, J.P.: Existence of positive solutions to Kirchhoff type problems with zero mass. J. Math. Anal. Appl. 410(1), 361–374 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liang, Z.P., Li, F.Y., Shi, J.P.: Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(1), 155–167 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2):93–105 (1976/77)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lieb, E.H., Loss, M.: Analysis, Volume 14 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  31. Lieb, E.H., Simon, B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53(3), 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  32. Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal. 4(6), 1063–1072 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lü, D.F.: A note on Kirchhoff-type equations with Hartree-type nonlinearities. Nonlinear Anal. 99, 35–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195(2), 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Moroz, V., Van Schaftingen, J.: Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265(2), 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mugnai, D.: The Schrödinger–Poisson system with positive potential. Comm. Partial Differ. Equ. 36(7), 1099–1117 (2011)

    Article  MATH  Google Scholar 

  38. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ruiz, D.: Semiclassical states for coupled Schrödinger–Maxwell equations: concentration around a sphere. Math. Models Methods Appl. Sci. 15(1), 141–164 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237(2), 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ruiz, D.: On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration. Mech. Anal. 198(1), 349–368 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tang, X.H., Cheng, B.T.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 261(4), 2384–2402 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, J., Tian, L.X., Xu, J.X., Zhang, F.B.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253(7), 2314–2351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Z.P., Zhou, H.-S.: Positive solution for a nonlinear stationary Schrödinger–Poisson system in \({\mathbb{R}}^3\). Discrete Contin. Dyn. Syst. 18(4), 809–816 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Wang, Z.P., Zhou, H.-S.: Sign-changing solutions for the nonlinear Schrödinger–Poisson system in \({\mathbb{R}}^3\). Calc. Var. Partial Differ. Equ. 52(3–4), 927–943 (2015)

    MATH  Google Scholar 

  46. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, 24. Birkhäuser Boston, Inc., Boston (1996)

    Google Scholar 

  47. Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in \({\mathbb{R}}^N\). Nonlinear Anal. Real World Appl. 12(2), 1278–1287 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Xie, Q.L., Ma, S.W.: Existence and concentration of positive solutions for Kirchhoff-type problems with a steep well potential. J. Math. Anal. Appl. 431(2), 1210–1223 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ye, Y.W., Tang, C.L.: Existence and multiplicity of solutions for Schrödinger–Poisson equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 53(1–2), 383–411 (2015)

    Article  MATH  Google Scholar 

  50. Zhao, G.L., Zhu, X.L., Li, Y.H.: Existence of infinitely many solutions to a class of Kirchhoff–Schrödinger–Poisson system. Appl. Math. Comput. 256, 572–581 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Zhao, L.G., Liu, H.D., Zhao, F.K.: Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential. J. Differ. Equ. 255(1), 1–23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Shi.

Additional information

Partially supported by National Natural Science Foundation of China (Grant Nos. 11671239, 11571209), and Science Council of Shanxi Province (2014021009-1, 2015021007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Gao, C., Liang, Z. et al. Existence and concentration of nontrivial nonnegative ground state solutions to Kirchhoff-type system with Hartree-type nonlinearity. Z. Angew. Math. Phys. 69, 148 (2018). https://doi.org/10.1007/s00033-018-1043-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-1043-5

Mathematics Subject Classification

Keywords

Navigation