Scattering of elastic bulk waves by periodic arrays of voids or anisotropic inclusions

  • Sergey V. Kuznetsov


A two-scale asymptotic analysis coupled with the spatially periodic fundamental solutions is used for analyzing diffraction of elastic bulk waves propagating in anisotropic media containing periodic inclusions or voids. The explicit equations are derived for the scattering cross sections and velocities of bulk waves propagating in spatially periodic media with arbitrary elastic anisotropy.


Scattering cross section Bulk wave Anisotropy Dispersed composite 

Mathematics Subject Classification



  1. 1.
    Bakhvalov, N.S.: Homogenized characteristics of bodies with periodic structure (in Russian). Dokl. AN USSR 218, 1046–1048 (1974)Google Scholar
  2. 2.
    Bensoussan, J., Lions, L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland Publishing Company, Amsterdam (1978)zbMATHGoogle Scholar
  3. 3.
    Sanchez-Palencia, E.: Homogenization method for the study of composite media. Asymptot. Anal. II, 192–214 (1983)MathSciNetGoogle Scholar
  4. 4.
    Nemat-Nasser, S., Iwakuma, T., Hejazi, M.: On composite with periodic microstructure. Mech. Mater. 1, 239–267 (1982)CrossRefGoogle Scholar
  5. 5.
    Nemat-Nasser, S., Taya, M.: On effective moduli of an elastic body containing periodically distributed voids. Q. Appl. Math. 39, 43–59 (1981)CrossRefzbMATHGoogle Scholar
  6. 6.
    Nemat-Nasser, S., Taya, M.: On effective moduli of an elastic body containing periodically distributed voids: comments and corrections. Q. Appl. Math. 43, 187–188 (1985)CrossRefzbMATHGoogle Scholar
  7. 7.
    Sangani, S., Acrivos, A.: Slow flow through a periodic array of spheres. Int. J. Multiph. Flow 8, 343–360 (1982)CrossRefzbMATHGoogle Scholar
  8. 8.
    Sangani, S., Lu, W.: Elastic coefficients of composites containing spherical inclusions in a periodic array. J. Mech. Phys. Solids 35, 1–21 (1987)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hasimoto, H.: On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317–328 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nunan, K.C., Keller, J.B.: Effective elasticity tensor of a periodic composite. J. Mech. Phys. Solids 32, 259–280 (1984)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kuznetsov, S.V.: Periodic fundamental solutions for anisotropic media (in Russian). Izv. RAN. MTT. 4, 99–104 (1991)Google Scholar
  12. 12.
    Kuznetsov, S.V.: Effective elasticity tensors for dispersed composites (in Russian). Prikl. Matem. Mech. 57, 103–109 (1993)Google Scholar
  13. 13.
    Kuznetsov, S.V.: Porous media with internal pressure (in Russian). Izv. RAN. MTT. 6, 22–28 (1993)Google Scholar
  14. 14.
    Kuznetsov, S.V.: Microstructural stresses in porous media (in Russian). Prikl. Mech. 27, 23–28 (1991)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kuznetsov, S.V.: Wave scattering in porous media (in Russian). Izv. RAN. MTT. 3, 81–86 (1995)Google Scholar
  16. 16.
    Bose, S.K., Mal, A.K.: Longitudinal shear waves in a fiber-reinforced composite. Int. J. Solids Struct. 9, 1075–1085 (1979)CrossRefzbMATHGoogle Scholar
  17. 17.
    Datta, S.K.: Diffraction of plane elastic waves by ellipsoidal inclusions. J. Acoust. Soc. Am. 61, 1432–1437 (1977)CrossRefzbMATHGoogle Scholar
  18. 18.
    Sadina, F.J., Willis, J.R.: A simple self-consistent analysis of wave propagation in particulate composites. Wave Motion 10, 127–142 (1988)CrossRefGoogle Scholar
  19. 19.
    Piau, M.: Attenuation of a plane compressional wave by a random distribution in thin circular cracks. Int. J. Eng. Sci. 17, 151–167 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Willis, J.R.: A polarization approach to the scattering of elastic waves—II. Multiple scattering from inclusions. J. Mech. Phys. Solids 28, 307–327 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gubernatis, J.E.: Long-wave approximations for the scattering of elastic waves from flaws with applications to ellipsoidal voids and inclusions. J. Appl. Phys. 50, 4046–4058 (1979)CrossRefGoogle Scholar
  22. 22.
    Gubernatis, J.E., Domani, E., Krumhasl, J.A.: Formal aspects of the theory of the scattering of ultrasound by flaws in elastic materials. J. Appl. Phys. 48, 2804–2811 (1977)CrossRefGoogle Scholar
  23. 23.
    Berdichevskij, V.L.: Spatial homogeneous of periodic structures (in Russian). Dokl. AN SSSR 222, 565–567 (1975)Google Scholar
  24. 24.
    Waterman, P.C.: Matrix theory of elastic wave scattering. J. Acoust. Soc. Am. 60, 567–580 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ruschitskij, J.J., Ostrakov, I.A.: Distortion of plane harmonic wave in a composite material. Dokl. AN USSR 11, 51–54 (1991)Google Scholar
  26. 26.
    Kuznetsov, S.V.: Direct boundary integral equation method in the theory of elasticity. Q. Appl. Math. 53, 1–8 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Liu, F., Liu, Z.: Elastic waves scattering without conversion in metamaterials with simultaneous zero Indices for longitudinal and transverse waves. Phys. Rev. Lett. 115, 1–12 (2015)Google Scholar
  28. 28.
    Liu, F., et al.: Scattering of waves by three-dimensional obstacles in elastic metamaterials with zero index. Phys. Rev. B 94, 1–10 (2016)Google Scholar
  29. 29.
    Caspani, L., et al.: Enhanced nonlinear refractive index in \(\varepsilon \)-near-zero materials. Phys. Rev. Lett. 116, 1–5 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations