Advertisement

Asymptotic behavior of solutions to an electromagnetic fluid model

Article
  • 83 Downloads

Abstract

In the present paper, we investigate the asymptotic behavior of solutions to an electromagnetic fluid system for viscous compressible flow without heat conduction in three spatial dimensions. The global existence and time-decay estimates of classical solution are established when the initial data are small perturbations of some given constant state. The proof is based on some elaborate energy estimates and the decay estimates for the linearized system.

Keywords

Navier–Stokes equation Maxwell equation Energy estimate Global existence Large time behavior 

Mathematics Subject Classification

35B40 35L40 35Q30 35Q61 

Notes

Acknowledgements

The research is supported by Postdoctoral Science Foundation of China through Grant 2017M610818.

References

  1. 1.
    Cabannes, H.: Theoretical Magnetohydrodynamics. Academic Press, New York (1970)Google Scholar
  2. 2.
    Duan, R., Ma, H.: Global existence and convergence rates for the 3-D compressible Navier–Stokes equations without heat conductivity. Indiana Univ. Math. J. 57(5), 2299–2319 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fan, J., Li, F., Nakamura, G.: Uniform well-posedness and singular limits of the isentropic Navier-Stokes-Maxwell system in a bounded domain. Z. Angew. Math. Phys. (2015).  https://doi.org/10.1007/s00033-014-0484-8 MathSciNetzbMATHGoogle Scholar
  4. 4.
    Germain, P., Ibrahim, S., Masmoudi, N.: Well-posedness of the Navier–Stokes–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 144, 71–86 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hu, X., Wang, D.: Global solutions to the three-dimensional full compressible magnetohydrodynamic flows. Commun. Math. Phys. 283, 255–284 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hu, X., Wang, D.: Global existence and large-time behavior of solutions to the three dimensional equations of compressible magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 197, 203–238 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ibrahim, S., Keraani, S.: Global small solutions for the Navier–Stokes–Maxwell system. SIAM J. Math. Anal. 43(5), 2275–2295 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ibrahim, S., Yoneda, T.: Local solvability and loss of smoothness of the Navier–Stokes–Maxwell equations with large initial data. J. Math. Anal. Appl. 396(2), 555–561 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Imai, I.: General principles of magneto-fluid dynamics. In: Magneto-Fulid Dynamics, Suppl. Prog. Theor. Phys., 24 , chap I, 1–34 (1962)Google Scholar
  10. 10.
    Jiang, S., Ju, Q., Li, F.: Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun. Math. Phys. 297, 371–400 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jiang, S., Li, F.: Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system. Nonlinearity 25, 1735–1752 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jiang, S., Li, F.: Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations. Asymptot. Anal. 95, 161–185 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jiang, S., Li, F.: Zero dielectric constant limit to the non-isentropic compressible Euler–Maxwell system. Sci. China Math. 58(1), 61–76 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kawashima, S.: Smooth global solutions for two-dimensional equations of electromagneto-fluid dynamics. Jpn. J. Appl. Math. 1, 207–222 (1984)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kawashima, S.: System of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Manetohydrodynamics, Ph.D thesis, Kyoto University, Kyoto (1983)Google Scholar
  17. 17.
    Kawashima, S., Shizuta, Y.: Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid. Tsukuba J. Math. 10(1), 131–149 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kawashima, S., Shizuta, Y.: Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid II. Proc. Jpn. Acad. Ser. A 62, 181–184 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Li, F., Mu, Y.: Low Mach number limit of the full compressible Navier–Stokes–Maxwell system. J. Math. Anal. Appl. 412, 334–344 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Li, F., Yu, H.: Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations. Proc. R. Soc. Edinb. 141A, 109–126 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Liu, T.-P., Zeng, Y.: Compressible Navier–Stokes equations with zero heat conductivity. J. Diff. Eqns. 153, 225–291 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984)CrossRefzbMATHGoogle Scholar
  23. 23.
    Masmoudi, N.: Global well posedness for the Maxwell–Navier–Stokes system in 2D. J. Math. Pures Appl. 93, 559–571 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Matsumura, A.: On the asymptotic behavior of solutions of semi-linear wave equations. Publ. Res. Inst. Math. Sci. Kyoto Univ. 12, 169–189 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Matsumura, A., Nishida, T.: The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A 55, 337–342 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nishihara, K.: \(L^p\)-\(L^q\) estimates of solutions to the damped wave equation in 3-dimensional space and their application. Math. Z. 244, 631–649 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Shizuta, Y., Kawashima, S.: Systems of equations of hyperbolic-parabolic type with application to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249–275 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Umeda, T., Kawashima, S., Shizuta, Y.: On the decay of solutions to the linearized equations of electromagnetofluid dynamics. Jpn. J. Appl. Math. 1, 435–457 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Vol’pert, A.I., Hudjaev, S.I.: On the Cauchy problem for composite systems of nonlinear differential equations. Math. USSR Sbornik 16, 517–544 (1972)CrossRefGoogle Scholar
  31. 31.
    Xu, X.: On the large time behavior of the electromagnetic fluid system in \({{\mathbb{R}}}^3\). Nonlinear Anal. Real World Appl. 33, 83–99 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zhang, J., Zhao, J.: Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics. Commun. Math. Sci. 8, 835–850 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics and Computational MathematicsBeijingPeople’s Republic of China

Personalised recommendations