Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow

  • Daniel Q. Eckhardt
  • Isom H. Herron


Magnetorotational instability (MRI) is an instability that is responsible for accretion, the phenomenon observed in astrophysical disks, for example around black holes. MRI can be modeled using the equations of MHD. A typical linear analysis in the past made use of the small Prandtl number approximation, which results in dropping one term from these equations. Previously, one of the authors (Herron) showed that the small magnetic Prandtl number approximation suppresses MRI in axisymmetric viscous resistive magnetized Taylor–Couette flow when one has no-slip velocity boundary conditions, and insulating magnetic boundary conditions. We follow up here with a proof that MRI is still suppressed with perfectly conducting magnetic boundary conditions on the cylinders.


MRI Magnetized Taylor–Couette Small magnetic Prandtl number 

Mathematics Subject Classification

Primary 76E25 Secondary 76E07 


  1. 1.
    Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. i-linear analysis. ii-nonlinear evolution. Astrophys. J. 376, 214–233 (1991)CrossRefGoogle Scholar
  2. 2.
    Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70(1), 1 (1998)CrossRefGoogle Scholar
  3. 3.
    Balbus, S.A., Hawley, J.F., Stone, J.M.: Nonlinear stability, hydrodynamical turbulence, and transport in disks. Astrophys. J. 467, 76 (1996)CrossRefGoogle Scholar
  4. 4.
    Brandenburg, A., Nordlund, A., Stein, R.F.: Dynamo-generated turbulence and large-scale magnetic fields in a keplerian shear flow. Astrophys. J. 446, 741 (1995)CrossRefGoogle Scholar
  5. 5.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics. Clarendon Press, Oxford (1961)Google Scholar
  6. 6.
    Chang, T.S., Sartory, W.K.: On the onset of instability by oscillatory modes in hydromagnetic couette flow. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 301, pp. 451–471. The Royal Society, (1967)Google Scholar
  7. 7.
    Eckhardt, D.: Magnetorotational Instability Suppression and Rayleigh-Bénard Convection in a Semi-infinite Layer. PhD thesis, Rensselaer Polytechnic Institute, Troy New York (2016)Google Scholar
  8. 8.
    Edlund, E.M., Ji, H.: Nonlinear stability of laboratory quasi-keplerian flows. Phys. Rev. E 89(2), 021004 (2014)CrossRefGoogle Scholar
  9. 9.
    Edlund, E.M., Ji, H.: Reynolds number scaling of the influence of boundary layers on the global behavior of laboratory quasi-keplerian flows. Phys. Rev. E 92(4), 043005 (2015)CrossRefGoogle Scholar
  10. 10.
    Goodman, J., Ji, H.: Magnetorotational instability of dissipative Couette flow. J. Fluid Mech. 462, 365–382 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hassard, B.D., Chang, T.S., Ludford, G.S.S.: An exact solution in the stability of mhd couette flow. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 327, pp. 269–278. The Royal Society (1972)Google Scholar
  12. 12.
    Hawley, J.F., Gammie, C.F., Balbus, S.A.: Local three-dimensional magnetohydrodynamic simulations of accretion disks. Astrophys. J. 440, 742 (1995)CrossRefGoogle Scholar
  13. 13.
    Herron, I., Goodman, J.: The small magnetic Prandtl number approximation suppresses magnetorotational instability. Z. Angew. Math. Phys. 57(4), 615–622 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Herron, I., Goodman, J.: Gauging magnetorotational instability. Z. Angew. Math. Phys. 61(4), 663–672 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Foster, I.H., Foster, M.R.: Partial Differential Equations in Fluid Dynamics. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  16. 16.
    Hollerbach, R., Rüdiger, G.: New type of magnetorotational instability in cylindrical taylor-couette flow. Phys. Rev. Lett. 95(12), 124501 (2005)CrossRefGoogle Scholar
  17. 17.
    Ji, H., Balbus, S.: Angular momentum transport. Phys. Today 66(8), 27 (2013)CrossRefGoogle Scholar
  18. 18.
    Ji, H., Burin, M., Schartman, E., Goodman, J.: Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444(7117), 343 (2006)CrossRefGoogle Scholar
  19. 19.
    Ji, H., Goodman, J., Kageyama, A.: Magnetorotational instability in a rotating liquid metal annulus. Mon. Not. R. Astron. Soc. 325(2), L1–L5 (2001)CrossRefGoogle Scholar
  20. 20.
    Joseph, D.D.: Stability of Fluid Motions I, vol. 27. Springer Science & Business Media, Berlin (2013)Google Scholar
  21. 21.
    Liu, W., Goodman, J., Herron, I., Ji, H.: Helical magnetorotational instability in magnetized taylor-couette flow. Phys. Rev. E 74(5), 056302 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lopez, J.M., Avila, M.: Boundary-layer turbulence in experiments on quasi-keplerian flows. J. Fluid Mech. 817, 21–34 (2017)CrossRefGoogle Scholar
  23. 23.
    Matsumoto, R., Tajima, T.: Magnetic viscosity by localized shear flow instability in magnetized accretion disks. Astrophys. J. 445, 767–779 (1995)CrossRefGoogle Scholar
  24. 24.
    Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer Science & Business Media, Berlin (2012)zbMATHGoogle Scholar
  25. 25.
    Lord Rayleigh, O.M.: On the dynamics of revolving fluids. Proc. R. Soc. Lond. 93(648), 148–154 (1917)CrossRefzbMATHGoogle Scholar
  26. 26.
    Redheffer, R.: Inequalities with three functions. J. Math. Anal. Appl. 16(2), 219–242 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rüdiger, G., Hollerbach, R., Schultz, M., Shalybkov, D.A.: The stability of mhd taylor-couette flow with current-free spiral magnetic fields between conducting cylinders. Astron. Nachr. 326(6), 409–413 (2005)CrossRefGoogle Scholar
  28. 28.
    Rüdiger, G., Hollerbach, R., Schultz, M., Elstner, D.: Destabilization of hydrodynamically stable rotation laws by azimuthal magnetic fields. Mon. Not. R. Astron. Soc. 377(4), 1481–1487 (2007)CrossRefGoogle Scholar
  29. 29.
    Rüdiger, G., Schultz, M., Shalybkov, D., Hollerbach, R.: Theory of current-driven instability experiments in magnetic taylor-couette flows. Phys. Rev. E 76(5), 056309 (2007)CrossRefGoogle Scholar
  30. 30.
    Schartman, E., Ji, H., Burin, M.J., Goodman, J.: Stability of quasi-Keplerian shear flow in a laboratory experiment. Astron. Astrophys. 543, A94 (2012)CrossRefGoogle Scholar
  31. 31.
    Shi, L., Hof, B., Rampp, M., Avila, M.: Hydrodynamic turbulence in quasi-keplerian rotating flows. Phys. Fluids 29(4), 044107 (2017)CrossRefGoogle Scholar
  32. 32.
    Velikhov, E.P.: Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 36(9), 995–998 (1959)MathSciNetGoogle Scholar
  33. 33.
    Vislovich, A.N., Novikov, V.A., Sinitsyn, A.K.: Influence of a magnetic field on the taylor instability in magnetic fluids. J. Appl. Mech. Tech. Phys. 27(1), 72–78 (1986)CrossRefGoogle Scholar
  34. 34.
    Wei, X., Ji, H., Goodman, J., Ebrahimi, F., Gilson, E., Jenko, F., Lackner, K.: Numerical simulations of the Princeton magnetorotational instability experiment with conducting axial boundaries. Phys. Rev. E 94(6), 063107 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations