Skip to main content
Log in

Study on the piezoelectric coated devices based on the 2D Green’s functions under a tangential line force

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper presents a refined approach of the electro-elastic fields through the 2D Green’s functions under a tangential line load. The structure of piezoelectric devices is composed of a piezoelectric substrate and an elastic coating. When arbitrary distributed load is applied, the components can be obtained by superposition principle. This method has high stability, efficiency and computational precision, compared with finite element method. And the conclusions provide meaningful value for the design of layered structure in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X., Yang Xu, Y.: Interaction between a piezoelectric screw dislocation and a finite crack with surface piezoelectricity. Z. Angew. Math. Phys. 66, 3679–3697 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Li, X.F., Lee, K.Y.: Transient response of a semi-infinite piezoelectric layer with a surface permeable crack. Z. Angew. Math. Phys. 57, 636–651 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, X., Zhou, Y.T., Zhong, Z.: On the analytical solution for sliding contact of piezoelectric materials subjected to a flat or parabolic indenter. Z. Angew. Math. Phys. 66, 473–495 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lioubimova, E., Schiavone, P.: Steady-state vibrations of an unbounded linear piezoelectric medium. Z. Angew. Math. Phys. 57, 862–874 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Loghmani, A., Danesh, M., Keshmiri, M.: Modal structural acoustic sensing with minimum number of optimally placed piezoelectric sensors. J. Sound. Vib. 16(363), 345–358 (2015)

    Google Scholar 

  6. Zhou, W., Khaliq, A., Tang, Y., Ji, H., Selmic, R.R.: Simulation and design of piezoelectric microcantilever chemical sensors. Sens. Actuator A 125, 69–75 (2005)

    Article  Google Scholar 

  7. Kalantarian, H., Alshurafa, N., Le, T., Sarrafzadeh, M.: Monitoring eating habits using a piezoelectric sensor-based necklace. Comput. Biol. Med. 58, 46–55 (2015)

    Article  Google Scholar 

  8. Wang, X.D., Huang, G.L.: The coupled dynamic behavior of piezoelectric sensors bonded to elastic media. J. Intel. Mat. Syst. Str. 17(10), 883–894 (2006)

    Article  Google Scholar 

  9. Song, G.L.: Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cem. Concr. Res. 30(11), 1723–1730 (2000)

    Article  Google Scholar 

  10. Song, G., Gu, H., Li, H.: Application of the piezoelectric materials for health monitoring in civil engineering. Earth Space USA 2004, 680–687 (2004)

    Google Scholar 

  11. Cookchennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)

    Article  Google Scholar 

  12. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)

    Article  Google Scholar 

  13. Kim, H.U., Lee, W.H., Rasikadias, H.V., Priya, S.: Piezoelectric microgenerators-current status and challenges. IEEE Trans. Utrason. Ferroelectr. Freq. Control 56, 1555–1568 (2009)

    Article  Google Scholar 

  14. Ferrari, M., Ferrari, V., Guizzettia, M., Andò, B., Baglio, S., Trigona, C.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuator A: Phys. 162, 425–431 (2010)

    Article  Google Scholar 

  15. Cookchennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 1–33 (2008)

    Google Scholar 

  16. Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C.: Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96, 1454–1486 (2008)

    Article  Google Scholar 

  17. James, E.P., Tudor, M.J., Beeby, S.P., Harris, N.R., Glynne-Jones, P., Ross, J.N., White, N.M.: An investigation of self-powered systems for condition monitoring applications. Sens. Actuators A: Phys. 110, 171–176 (2004)

    Article  Google Scholar 

  18. Huang, H.H., Chen, K.S.: Design, analysis, and experimental studies of a novel PVDF-based piezoelectric energy harvester with beating mechanisms. Sens. Actuators A: Phys. 238, 317–328 (2016)

    Article  Google Scholar 

  19. Priya, S.: Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 87, 184101 (2005)

    Article  Google Scholar 

  20. Mateu, L., Moll, F.: Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J. Intell. Mater. Syst. Struct. 16, 835–845 (2005)

    Article  Google Scholar 

  21. Mateu, L., Moll, F., Moll, F.: Electrical characterization of a piezoelectric film-based power generator for autonomous wearable devices. In: XVIII Conference on Design of Circuits and Integrated Systems (2003)

  22. Xie, X., Wu, N., Yuen, K., Wang, Q.: Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass. Int. J. Eng. Sci. 72, 98–106 (2013)

    Article  Google Scholar 

  23. Hou, P.F., Zhang, Y.: An accurate and efficient method for piezoelectric coated functional devices based on the two-dimensional Green’s function for a normal line force and line charge. Smart Mater. Struct. 26, 095045 (2017)

    Article  Google Scholar 

  24. Hou, P.F., Zhang, Y., Chen, B.J.: Study on the interactions between the coatings of electric conductor or dielectric media and piezoelectric substrate in the piezoelectric functional devices. AIP Adv. 7, 095109 (2017)

    Article  Google Scholar 

  25. Liu, T., Oates, W.S., Wan, S., Lynch, C.-S.: Crack initiation at electrode edges in PZN-4.5%PT single crystals. J. Intell. Mater. Syst. Struct. 16, 373–379 (2005)

    Article  Google Scholar 

  26. Danoyan, Z.N., Piliposian, G.T.: Surface electro-elastic Love waves in a layered structure with a piezoelectric substrate and a dielectric layer. Int. J. Solids Struct. 44(18–19), 5829–5847 (2007)

    Article  MATH  Google Scholar 

  27. Shindo, Y., Narita, F., Sosa, H.: Electroelastic analysis of piezoelectric ceramics with surface electrodes. Int. J. Eng. Sci. 36, 1001–1009 (1998)

    Article  Google Scholar 

  28. Hou, P.F., Jiang, H.Y., Li, J.R.: A method for the orthotropic coating-substrate system: Green’s function for a normal line force on the surface. Int. J. Mech. Sci. 96–97, 172–181 (2015)

    Article  Google Scholar 

  29. Ding, H.J., Wang, G.Q., Chen, W.Q.: A boundary integral formulation and 2D fundamental solutions for piezoelectric media. Comput. Method. Appl. M. 158, 65–80 (1998)

    Article  MATH  Google Scholar 

  30. Ding, H.J., Hou, P.F., Guo, F.L.: The elastic and electric fields for three-dimensional contact for transversely isotropic piezoelectric materials. Int. J. Solids. Struct. 37, 3201–3229 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, PF., Zhang, Y. Study on the piezoelectric coated devices based on the 2D Green’s functions under a tangential line force. Z. Angew. Math. Phys. 69, 48 (2018). https://doi.org/10.1007/s00033-018-0941-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0941-x

Keywords

Mathematics Subject Classification

Navigation