Skip to main content
Log in

A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A theory of elastic magnets is formulated under possible diffusion and heat flow governed by Fick’s and Fourier’s laws in the deformed (Eulerian) configuration, respectively. The concepts of nonlocal nonsimple materials and viscous Cahn–Hilliard equations are used. The formulation of the problem uses Lagrangian (reference) configuration while the transport processes are pulled back. Except the static problem, the demagnetizing energy is ignored and only local non-self-penetration is considered. The analysis as far as existence of weak solutions of the (thermo) dynamical problem is performed by a careful regularization and approximation by a Galerkin method, suggesting also a numerical strategy. Either ignoring or combining particular aspects, the model has numerous applications as ferro-to-paramagnetic transformation in elastic ferromagnets, diffusion of solvents in polymers possibly accompanied by magnetic effects (magnetic gels), or metal-hydride phase transformation in some intermetallics under diffusion of hydrogen accompanied possibly by magnetic effects (and in particular ferro-to-antiferromagnetic phase transformation), all in the full thermodynamical context under large strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand, L.: A thermo-mechanically-coupled theory accounting for hydrogen diffusion and large elastic-viscoplastic deformations of metals. Int. J. Solids Struct. 48, 962–971 (2011)

    Article  MATH  Google Scholar 

  2. Ball, J.M.: Some open problems in elasticity. In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, Mechanics, and Dynamics, pp. 3–59. Springer, New York (2002)

    Chapter  Google Scholar 

  3. Boccardo, L., Gallouët, T.: Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bohlius, S., Brand, H., Pleiner, H.: Macroscopic dynamics of uniaxial magnetic gels. Phys. Rev. E 70(6), 061411 (2004)

    Article  Google Scholar 

  5. Bonetti, E., Colli, P., Laurençot, P.: Global existence for a hydrogen storage model with full energy balance. Nonlin. Anal. Th. Meth. Appl. 75, 3558–3573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonetti, E., Colli, P., Tomassetti, G.: A non-smooth regularization of a forward-backward parabolic equation. Math. Mod. Met. Appl. Sci. 27, 641–661 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borcea, L., Bruno, O.: On the magneto-elastic properties of elastomer-ferromagnet composites. J. Mech. Phys. Solids 49, 2877–2919 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brown, W.F.: Micromagnetics. Krieger Publ. Co., New York (1963)

    MATH  Google Scholar 

  9. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  10. Ciarlet, P.G.: Mathematical Elasticity, vol. I. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  11. Ciarlet, P.G., Nečas, J.: Injectivity and self-contact in nonlinear elasticity. Arch. Ration. Mech. Anal. 97, 171–188 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Collin, D., Auernhammer, G.K., Gavat, O., Martinoty, P., Brand, H.R.: Frozen-in magnetic order in uniaxial magnetic gels: preparation and physical properties. Macromol. Rapid Commun. 24(12), 737–741 (2003)

    Article  Google Scholar 

  13. DeSimone, A., Podio-Guidigli, P.: On the continuum theory of deformable ferromagnetic solids. Arch. Ration. Mech. Anal. 136, 201–233 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duda, F.P., Souza, A.C., Fried, E.: A theory for species migration in a finitely strained solid with application to polymer network swelling. J. Mech. Phys. Solids 58, 515–529 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duda, F.P., Tomassetti, G.: Stress effects on the kinetics of hydrogen adsorption in a spherical particle: an analytical model. Int. J. Hydr. Energy 40, 17009–17016 (2015)

    Article  Google Scholar 

  16. Edelen, D.G.B.: Nonlocal field theories. Part II. In: Eringen, A.C. (ed.) Continuum Physics, Polar and Nonlocal Field Theories, vol. IV. Academic Press, New York (1976)

    Google Scholar 

  17. Elliott, C.M., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27, 404–423 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  19. Feireisl, E., Málek, J.: On the Navier–Stokes equations with temperature-dependent transport coefficients. Diff. Equ. Nonlinear Mech. pp. 14 (electronic), Art.ID 90616, (2006)

  20. Foss, M., Hrusa, W.J., Mizel, V.J.: The Lavrentiev gap phenomenon in nonlinear elasticity. Arch. Ration. Mech. Anal. 167, 337–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fried, E., Gurtin, M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-lenght scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gurtin, M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D 92, 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Healey, T.J., Krömer, S.: Injective weak solutions in second-gradient nonlinear elasticity. ESAIM: Control, Optim. Cal. Var. 15, 863–871 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hubert, A., Schäfer, R.: Magnetic Domains. Springer, New York (1998)

    Google Scholar 

  25. James, R.: Configurational forces in magnetism with application to the dynamics of a small-scale ferromagnetic shape memory cantilever. Cont. Mech. Thermodyn. 14, 55–86 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. James, R.D., Kinderlehrer, D.: Theory of magnetostriction with applications to \(\text{ Tb }_x\text{ Dy }_{1-x}\text{ Fe }_2\). Phil. Mag. B 68, 237–274 (1993)

    Article  Google Scholar 

  27. Jirásek, M.: Nonlocal theories in continuum mechanics. Acta Polytech. 44, 16–34 (2004)

    Google Scholar 

  28. Kolomiets, A., Havela, L., Andreev, A., Sechovský, V., Yartys, V.: RNiAl hydrides and their magnetic properties. J. Alloys Compd. 262, 206–210 (1997)

    Article  Google Scholar 

  29. Kolomiets, A., Havela, L., Rafaja, D., Bordallo, H., Nakotte, H., Yartys, V., Hauback, B., Drulis, H., Iwasieczko, W., DeLong, L.: Magnetic properties and crystal structure of HoNiAl and UNiAl hydrides. J. Appl. Phys. 87(9; PART 3), 6815–6817 (2000)

    Article  Google Scholar 

  30. Kolomiets, A., Havela, L., Sechovský, V., Yartys, V., Harris, I., et al.: Structural and magnetic properties of equiatomicrare-earth ternaries. Int. J. Hydr. Energy 24, 119–127 (1999)

    Article  Google Scholar 

  31. Kolomiets, A., Havela, L., Yartys, V., Andreev, A.: Hydrogen absorption-desorption, crystal structure and magnetism in RENiAl intermetallic compounds and their hydrides. J. Alloys Compd. 253, 343–346 (1997)

    Article  Google Scholar 

  32. Kolomiets, A., Havela, L., Yartys, V., Andreev, A.: Hydrogenation and its effect on crystal structure and magnetism in RENiAl intermetallic compounds. J. Phys. Stud. 3, 55–59 (1999)

    Google Scholar 

  33. Kružík, M., Roubíček, T.: Mathematical Methods in Contiuum Mechanics of Solids. IMM Series. Springer, Heidelberg, to appear (2018)

  34. Kružík, M., Stefanelli, U., Zeman, J.: Existence results for incompressible magnetoelasticity. Discret. Contin. Dyn. Syst. 35, 2615–2623 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Kunin, I.A.: Elastic Media with Microstructure I: One-Dimensional Models, II: Three-Dimensional Models. Springer, Berlin (1983)

    MATH  Google Scholar 

  36. Lewicka, M., Mucha, P.B.: A local existence result for a system of viscoelasticity with physical viscosity. Evol. Equ. Contr. Theor. 2, 337–353 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mielke, A., Roubíček, T.: Rate-independent elastoplasticity at finite strains and its numerical approximation. Math. Mod. Meth. Appl. Sci. 26, 2203–2236 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mielke, A., Roubíček, T.: Thermoviscoelasticity in Kelvin–Voigt rheology at large strains. In preparation

  39. Mindlin, R., Eshel, N.: On first strain-gradient theories in linear elasticity. Intl. J. Solid Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  40. Miranville, A.: A model of Cahn-Hilliard equation based on a microforce balance. Compt. Rend. Acad. Sci. Ser. I-Math. 328, 1247–1252 (1999)

    MathSciNet  MATH  Google Scholar 

  41. Podio-Guidugli, P.: Contact interactions, stress, and material symmetry, for nonsimple elastic materials. Theor. Appl. Mech. 28–29, 261–276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Podio-Guidugli, P., Roubíček, T., Tomassetti, G.: A thermodynamically-consistent theory of the ferro/paramagnetic transition. Arch. Ration. Mech. Anal. 198, 1057–1094 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Raj, P., Shashikala, K., Sathyamoorthy, A., Kumar, N.H., Rao, C.R.V., Malik, S.K.: Hydride phases, structure, and magnetic properties of the UNiAlH\(_y\) system. Phys. Rev. B 63, 094414 (2001)

    Article  Google Scholar 

  44. Rogers, R.C.: Nonlocal variational problems in electromagneto-elastostatics. SIAM J. Math. Anal. 19, 1329–1347 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rogers, R.C.: Existence results for large deformations of magnetostrictive materials. J. Intell. Mater. Syst. Struct. 4, 477–483 (1993)

    Article  Google Scholar 

  46. Rossi, R.: On two classes of generalized viscous Cahn–Hilliard equations. Commun. Pure Appl. Anal. 4, 405–430 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Roubíček, T.: Nonlinear Partial Differential Equations with Applications, 2nd edn. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  48. Roubíček, T., Tomassetti, G.: Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis. Arch. Ration. Mech. Anal. 210, 1–43 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Roubíček, T., Tomassetti, G.: Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis. Discret Contin. Dyn. Syst. B 19, 2313–2333 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Roubíček, T., Tomassetti, G.: Thermodynamics of shape-memory alloys under electric current. Zeit. Angew. Math. Mech. 61(61), 1–20 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Rybka, P., Luskin, M.: Existence of energy minimizers for magnetostrictive materials. SIAM J. Math. Anal. 36, 2004–2019 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tarnawski, Z., Kolwicz-Chodak, L., Figiel, H., Kim-Ngan, N.-T.H., Havela, L., Miliyanchuk, K., Sechovský, V., Santavá, E., Šebek, J.: Specific heat and magnetization of RMn\(_2\)(H, D)\(_2\). J. Alloys Compd. 442, 372–374 (2007)

    Article  Google Scholar 

  53. Šilhavý, M.: Phase transitions in non-simple bodies. Arch. Ration. Mech. Anal. 88, 135–161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  54. Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin (1997)

    MATH  Google Scholar 

  55. Tomassetti, G.: Smooth and non-smooth regularization of the nonlinear diffusion equation. Discret Contin. Dynam. Syst. Ser. S. 10, 1519–1537 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Toupin, R.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  57. Triantafyllidis, N., Aifantis, E.: A gradient approach to localization of deformation. I. Hyperelastic Mater. J. Elast. 16, 225–237 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zrínyi, M., Szabó, D.: Muscular contraction mimiced by magnetic gels. Int. J. Mod. Phys. B 15(06n07), 557–563 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Miroslav Šilhavý for fruitful discussions about modelling aspects. Also, many conceptual and other comments of three anonymous referees have been very useful for improving the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Roubíček.

Additional information

This research was partly supported through the Grants Czech Science Foundation 16-03823S “Homogenization and multi-scale computational modelling of flow and nonlinear interactions in porous smart structures” and 16-34894L “Variational structures in continuum thermomechanics of solids” and by the Austrian-Czech projects FWF/MSMT ČR No. 7AMB16AT015, as well as through the institutional project RVO: 61388998 (ČR). The second author also acknowledges financial support of INdAM-GNFM through Grant “Progetto Giovani”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roubíček, T., Tomassetti, G. A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis. Z. Angew. Math. Phys. 69, 55 (2018). https://doi.org/10.1007/s00033-018-0932-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0932-y

Mathematics Subject Classification

Keywords

Navigation