Skip to main content
Log in

Expressions to Rayleigh circumferential phase velocity and dispersion relation for a cylindrical surface under mechanical pressure

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper describes a substantiated mathematical theory for Rayleigh waves propagated on some types of metal cylinders. More specifically, it presents not only a new way to express the dispersion relation of Rayleigh waves propagated on the cylindrical surface, but also how it can be used to construct a mathematical equation showing that the applied static mechanical pressure affects the shear modulus of the metal cylinder. All steps, required to conclude the process, consider the equation of motion as a function of radial and circumferential coordinates only, while the axial component can be overlooked without causing any problems. Some numerical experiments are done to illustrate the changes in the Rayleigh circumferential phase velocity in a metal cylindrical section due to static mechanical pressure around its external surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayes, M., Rivlin, R.S.: A note on the secular equation for Rayleigh waves. Z. Angew. Math. Phys. 13, 80–83 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sharma, J.N., Pal, M.: Rayleigh–Lamb waves in magneto-thermoelastic homogeneous isotropic plate. Int. J. Eng. Sci. 42, 137–155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kaplunov, J., Nolde, E., Prikazchikov, D.A.: A revisit to the moving load problem using an asymptotic model. Wave Motion 47, 440–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kaplunov, J., Prikazchikov, D.A.: Asymptotic theory for Rayleigh and Rayleigh-type waves. Adv. Appl. Mech. 50, 1–106 (2017)

    Article  Google Scholar 

  5. Destrad, M., Fu, Y.B.: A wave near the edge of a circular disk. Open Acoust. J. 42, 15–18 (2008)

    Article  Google Scholar 

  6. Guinan, M.W., Steinberg, D.J.: A simple approach to extrapolating measured polycrystalline shear moduli to very high pressure. J. Phys. Chem. Solids 36, 829–829 (1974)

    Article  Google Scholar 

  7. Guinan, M.W., Steinberg, D.J.: A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 51, 1498–1504 (1979)

    Google Scholar 

  8. Abrikosov, A.A.: Some properties of strongly compressed matter. J. Exp. Theor. Phys. 12, 1254 (1961)

    Google Scholar 

  9. Guinan, M.W., Steinberg, D.J.: Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids 41, 1501–1512 (1973)

    Google Scholar 

  10. Wolf, J.: Air force materials laboratory, Report AFML-TR-68-115 (1972)

  11. Chandrasekharaiah, D.S.: Effects of surface stresses and voids on Rayleigh waves in an elastic solid. Int. J. Eng. Sci. 25, 205–211 (1987)

    Article  MATH  Google Scholar 

  12. Stein, S., Wysession, M.: An introduction to Seismology, Earthquakes and Structure. Blackweel Publishing Ltd., Oxford (2003)

    Google Scholar 

  13. Duffy, D.G.: Green’s Functions With Applications. Chapman and Hall/CRC, Washington (2001)

    Book  MATH  Google Scholar 

  14. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. The Maple Press Company, York (1951)

    MATH  Google Scholar 

  15. Watson, G.N.: Theory of Bessel Functions. The Syndics of the Cambridge University Press, Cambriedge (1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Eduardo Sebold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebold, J.E., de Lacerda, L.A. Expressions to Rayleigh circumferential phase velocity and dispersion relation for a cylindrical surface under mechanical pressure. Z. Angew. Math. Phys. 69, 25 (2018). https://doi.org/10.1007/s00033-018-0918-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0918-9

Mathematics Subject Classification

Keywords

Navigation