Skip to main content
Log in

Variational and Stability Properties of Constant Solutions to the NLS Equation on Compact Metric Graphs

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the nonlinear Schrödinger equation with pure power nonlinearity on a general compact metric graph, and in particular its stationary solutions with fixed mass. Since the the graph is compact, for every value of the mass there is a constant solution. Our scope is to analyze (in dependence of the mass) the variational properties of this solution, as a critical point of the energy functional: local and global minimality, and (orbital) stability. We consider both the subcritical regime and the critical one, in which the features of the graph become relevant. We describe how the above properties change according to the topology and the metric properties of the graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adami R., Cacciapuoti C., Finco D., and Noja D., On the structure of critical energy levels for the cubic focusing NLS on star graphs, J. Phys. A 45, no. 19 (2012), 192001.

    Article  MathSciNet  Google Scholar 

  2. Adami R., Cacciapuoti C., Finco D., and Noja D., Stationary states of NLS on star graphs, EPL 100 (2012) 10003.

    Article  Google Scholar 

  3. Adami R., Cacciapuoti C., Finco D., and Noja D., Variational properties and orbital stability of standing waves for NLS equation on a star graph, J. Differential Equations 257, no. 10 (2014), 3738–3777.

    Article  MathSciNet  Google Scholar 

  4. Adami R., Cacciapuoti C., Finco D., Noja D.: Constrained energy minimization and orbital stability for the NLS equation on a star graph. Ann. I. H. Poincaré – AN 31, 1289–1310 (2014)

    Article  MathSciNet  Google Scholar 

  5. Adami R., Serra E., and Tilli P., NLS ground states on graphs, Calc. Var. and PDEs 54, no. 1 (2015), 743–761.

    Article  MathSciNet  Google Scholar 

  6. Adami R., Serra E., Tilli P.: Threshold phenomena and existence results for NLS ground states on metric graphs. J. Funct. Anal. 271, 201–223 (2016)

    Article  MathSciNet  Google Scholar 

  7. Adami R., Serra E., Tilli P.: Negative Energy Ground States for the L2-Critical NLSE on Metric Graphs. Commun. Math. Phys. 352, 387–406 (2017)

    Article  Google Scholar 

  8. Adami R., Serra E., and Tilli P., Nonlinear dynamics on branched structures and networks, Riv. Mat. Univ. Parma 8, no. 1 (2017), 109–159.

  9. Adami R., Serra E., and Tilli P., Multiple positive bound states for the subcritical NLS equation on metric graphs, Calc. Var. and PDEs, to appear.

  10. Adami R., Dovetta S., Serra E., and Tilli P., Dimensional crossover with a continuum of critical exponents for NLS on doubly periodic metric graphs, Analysis & PDEs, to appear.

  11. Ali Mehmeti F., Von Below J., Nicaise S.: Partial differential equations on multistructures, proceedings of the conference held in Luminy, France. Marcel Dekker, New York-Basel (2001)

    Book  Google Scholar 

  12. Ambrosetti A., Prodi G., A Primer of Nonlinear Analysis, Cambridge University Press (1995).

  13. Band R., Lévy G.: Quantum Graphs which Optimize the Spectral Gap. Annales Henry Poincaré 18(10), 3269—3323 (2017)

    Article  MathSciNet  Google Scholar 

  14. Berkolaiko G., Carlson R., Fulling S. A., and Kuchment P., Quantum Graphs and Their Applications: Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Quantum Graphs and Their Applications, June 19-23, 2005, Snowbird, Utah. Vol. 415. American Mathematical Soc., 2006.

  15. Berkolaiko G., Kennedy J. B., Kurasov P., Mugnolo D., Surgery principles for the spectral analysis of quantum graphs, ArXiv: 1807.08183 [math.PS] (2018), 43 pages.

  16. Berkolaiko, G., Kuchment P., Introduction to Quantum Graphs, Mathematical Surveys and Monographs, vol. 186, AMS, Providence, RI, 2013.

  17. Cacciapuoti C., Finco D., Noja D.: Topology-induced bifurcations for the nonlinear Schrödinger equation on the tadpole graph. Phys. Rev. E 91, 013206 (2015)

    Article  MathSciNet  Google Scholar 

  18. Cacciapuoti C., Finco D., Noja D.: Ground state and orbital stability for the NLS equation on a general starlike graph with potentials. Nonlinearity 30, 3271–3303 (2017)

    Article  MathSciNet  Google Scholar 

  19. Dovetta S.: Existence of infinitely many stationary solutions of the L 2-subcritical and critical NLSE on compact metric graphs. J. Differential Equations 264, 4806–4821 (2018)

    Article  MathSciNet  Google Scholar 

  20. Dovetta S., Tentarelli L., Ground states of the L 2 -critical NLS equation with localized nonlinearity on a tadpole graph, arXiv:1803.09246 [math.AP] (2018), 11 pages.

  21. Exner P., Keating J. P., Kuchment P., Sunada T., and Teplyaev A., Analysis on graphs and its applications, American Mathematical Society, Providence, RI, 2008 (Proceedings of Symposia in Pure Mathematics, 77).

  22. Friedlander L.: Extremal properties of eigenvalues for a metric graph. Annales de l’Institut Fourier 55(1), 199–211 (2005)

    Article  MathSciNet  Google Scholar 

  23. Fröhlich J., Gustafson S., Jonsson B.L.G., Sigal I.M.: Solitary Wave Dynamics in an External Potential. Commun. Math. Phys. 250, 613–642 (2004)

    Article  MathSciNet  Google Scholar 

  24. Goodman R. H., NLS Bifurcations on the bowtie combinatorial graph and the dumbbell metric graph, arXiv:1710.00030 [math-ph] (2017), 29 pages.

  25. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  Google Scholar 

  26. Kuchment P., Graph models for waves in thin structures, Waves in Random Media 12, no. 4 (2002), R1–R24.

    Article  MathSciNet  Google Scholar 

  27. Kuchment P., Quantum graphs. I. Some basic structures, Waves in Random Media 14, no. 1 (2004), 107–128.

    Article  MathSciNet  Google Scholar 

  28. Kuchment P., Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A: Math. and Gen. 38, no. 22 (2005), 4887.

    Article  MathSciNet  Google Scholar 

  29. Kurasov P., Naboko, S. Rayleigh estimates for differential operators on graphs, J. Spectr. Theory 4, no. 2 (2014), 211–219.

    Article  MathSciNet  Google Scholar 

  30. Li Y., Li F., and Shi J., Ground states of nonlinear Schrödinger equation on star metric graphs, J. Math. Anal. Appl. 459, no.2 (2018), 661–685.

    Article  MathSciNet  Google Scholar 

  31. Lorenzo M., Lucci M., Merlo V., Ottaviani I., Salvato M., Cirillo M., Müller F.,Weimann T., Castellano M.G., Chiarello F., and Torrioli G., On Bose-Einstein condensation in Josephson junctions star graph arrays, Phys. Lett. A 378, no. 7-8 (2014), 655–658.

    Article  Google Scholar 

  32. Marzuola J. L., Pelinovsky D. E., Ground state on the dumbbell graph, Appl. Math. Res. Express 2016, no. 1 (2016), 98–145.

    Article  MathSciNet  Google Scholar 

  33. Marzuola J. L., Pelinovsky D. E., Ground state on the dumbbell graph, arXiv:1509.04721v4 [math.AP] (2016), 34 pages.

    Article  MathSciNet  Google Scholar 

  34. Mugnolo D.: Semigroup methods for evolution equations on networks. Springer, Cham (2014)

    Book  Google Scholar 

  35. Mugnolo D.: Mathematical Technology of Networks, Springer Proceedings in Mathematics & Statistics, vol.128. Springer, Cham (2015)

    Google Scholar 

  36. Nicaise S.: Spectre des réseaux topologiques finis. Bull. Sci. Math. 2(111), 401–413 (1987)

    MATH  Google Scholar 

  37. Noja D., Nonlinear Schrödinger equation on graphs: recent results and open problems, Phil. Trans. R. Soc. A 372 (2007) (2014), 20130002.

    Article  MathSciNet  Google Scholar 

  38. Noja D., Pelinovsky D., Shaikhova G.: Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph. Nonlinearity 28, 2343–2378 (2015)

    Article  MathSciNet  Google Scholar 

  39. Ruedenberg K., Scherr C. W., Free-Electron Network Model for Conjugated Systems. I. Theory, J. Chem. Phys. 21, no. 9 (1953), 1565–1581.

  40. Serra E., Tentarelli L., Bound states of the NLS equation on metric graphs with localized nonlinearities, J. Differential Equations 260, no. 7 (2016), 5627–5644.

    Article  MathSciNet  Google Scholar 

  41. Serra E., Tentarelli L.: On the lack of bound states for certain NLS equations on metric graphs. Nonlinear Anal. 145, 68–82 (2016)

    Article  MathSciNet  Google Scholar 

  42. Tentarelli L., NLS ground states on metric graphs with localized nonlinearities, J. Math. Anal. Appl. 433, no. 1 (2016), 291–304.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Diego Noja for enlightening discussions on the issue of the stability of stationary solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Serra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacciapuoti, C., Dovetta, S. & Serra, E. Variational and Stability Properties of Constant Solutions to the NLS Equation on Compact Metric Graphs. Milan J. Math. 86, 305–327 (2018). https://doi.org/10.1007/s00032-018-0288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-018-0288-y

Mathematics Subject Classification (2010)

Keywords

Navigation