Skip to main content
Log in

Boundedness and Decay of Solutions for Some Fractional Magnetic Schrödinger Equations in \({\mathbb{R}^N}\)

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that nontrivial weak solutions of a class of fractional magnetic Schrödinger equations in \({\mathbb{R}^N}\) are bounded and vanish at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Abatangelo and E. Valdinoci, Getting acquainted with the fractional Laplacian, Springer INdAM Ser., available at https://arxiv.org/pdf/1710.11567.pdf.

  2. Alves C.O.: Figueiredo G.M., Multiple Solutions for a Semilinear Elliptic Equation with Critical Growth and Magnetic Field. Milan J. Math., 82(2), 389–405 (2014)

    Article  MathSciNet  Google Scholar 

  3. Alves C.O., Figueiredo G.M., Furtado M.F.: Multiple solutions for a nonlinear Schrödinger equation with magnetic fields. Comm. Partial Differential Equations 36, 1565–1586 (2011)

    Article  MathSciNet  Google Scholar 

  4. C.O. Alves and O.H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in \({\mathbb{R}^N}\) via penalization method, Calc. Var. Partial Differential Equations 55 (2016), art. 47, 19 pp.

  5. V. Ambrosio, Concentration phenomena for a fractional Choquard equation with magnetic field, accepted for publication in Dyn. Partial Differ. Equ.

  6. Ambrosio V., d’Avenia P.: Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity. J. Differential Equations 264(5), 3336–3368 (2018)

    Article  MathSciNet  Google Scholar 

  7. Arioli G., Szulkin A.: A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170, 277–295 (2003)

    Article  MathSciNet  Google Scholar 

  8. C. Bucur and E. Valdinoci, Nonlocal diffusion and applications. Lecture Notes of the Unione Matematica Italiana, 20. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. xii+155 pp.

  9. L. Caffarelli and Y. Sire, On some pointwise inequalities involving nonlocal operators, Harmonic analysis, partial differential equations and applications, 1–18, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2017.

    Google Scholar 

  10. Chen and L. Veron, Semilinear fractional elliptic equations involving measures, J. Differential Equations 257 (2014), no. 5, 1457–1486.

    Article  MathSciNet  Google Scholar 

  11. Cingolani S., Secchi S.: Semiclassical limit for nonlinear Schrödinger equations with electromagnetic fields. J. Math. Anal. Appl. 275, 108–130 (2002)

    Article  MathSciNet  Google Scholar 

  12. Córdoba A., Córdoba D.: A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys., 249(3), 511–528 (2004)

    Article  MathSciNet  Google Scholar 

  13. d’Avenia P., Squassina M.: Ground states for fractional magnetic operators. ESAIM Control Optim. Calc. Var. 24(1), 1–24 (2018)

    Article  MathSciNet  Google Scholar 

  14. Di Nezza E., Palatucci G., Valdinoci E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  15. S. Dipierro, M. Medina, E. Valdinoci, Fractional elliptic problems with critical growth in the whole of \({\mathbb{R}^N}\). Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15. Edizioni della Normale, Pisa, 2017. viii+152 pp.

  16. M. Esteban, P.L. Lions, Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial differential equations and the calculus of variations, Vol. I, 401–449, Progr. Nonlinear Differential Equations Appl., 1, Birkhäuser Boston, Boston, MA, 1989.

  17. Felmer P., Quaas A., Tan J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 142, 1237–1262 (2012)

    Article  MathSciNet  Google Scholar 

  18. Fiscella A., Pinamonti A., Vecchi E.: Multiplicity results for magnetic fractional problems. J. Differential Equations 263, 4617–4633 (2017)

    Article  MathSciNet  Google Scholar 

  19. N. Garofalo, Fractional thoughts, preprint arxiv:1712.03347.

  20. Hiroshima F., Ichinose T., Lörinczi J.: Kato’s Inequality for Magnetic Relativistic Schrödinger Operators. Publ. Res. Inst. Math. Sci. 53(1), 79–117 (2017)

    Article  MathSciNet  Google Scholar 

  21. T. Ichinose, Magnetic relativistic Schrödinger operators and imaginary-time path integrals, Mathematical physics, spectral theory and stochastic analysis, 247–297, Oper. Theory Adv. Appl. 232, Birkhäuser/Springer Basel AG, Basel, 2013.

  22. T. Kato, Schrödinger operators with singular potentials, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), Israel J. Math. 13, 135–148 (1973).

    Article  MathSciNet  Google Scholar 

  23. Kurata K.: Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal. 41, 763–778 (2000)

    Article  MathSciNet  Google Scholar 

  24. E. H. Lieb and M. Loss, Analysis. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 1997. xviii+278 pp.

  25. X. Mingqi, V. Răadulescu and B. Zhang, A critical fractional Choquard-Kirchhoff problem with magnetic field, to appear in Commun. Contemp. Math. https://doi.org/10.1142/S0219199718500049.

  26. G. Molica Bisci, V. Răadulescu and R. Servadei, Variational methods for nonlocal fractional problems, with a foreword by Jean Mawhin. Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016. xvi+383 pp.

  27. Moser J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math. 13, 457–468 (1960)

    Article  MathSciNet  Google Scholar 

  28. Silvestre L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  Google Scholar 

  29. Squassina M., Volzone B.: Bourgain-Brezis-Mironescu formula for magnetic operators. C. R. Math. 354, 825–831 (2016)

    Article  MathSciNet  Google Scholar 

  30. Zhang B., Squassina M., Zhang X.: Fractional NLS equations with magnetic field, critical frequency and critical growth. Manuscripta Math. 155(1-2), 115–140 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author warmly thanks the anonymous referee for her/his useful and nice comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosio, V. Boundedness and Decay of Solutions for Some Fractional Magnetic Schrödinger Equations in \({\mathbb{R}^N}\). Milan J. Math. 86, 125–136 (2018). https://doi.org/10.1007/s00032-018-0283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-018-0283-3

Mathematics Subject Classification (2010)

Keywords

Navigation