It was proved by the first-named author and Zubkov [13] that given an affine algebraic supergroup \( \mathbbm{G} \) and a closed sub-supergroup ℍ over an arbitrary field of characteristic ≠ 2, the faisceau \( \mathbbm{G}\tilde{/}\mathrm{\mathbb{H}} \) (in the fppf topology) is a superscheme, and is, therefore, the quotient superscheme \( \mathbbm{G}/\mathrm{\mathbb{H}} \), which has some desirable properties, in fact. We reprove this, by constructing directly the latter superscheme \( \mathbbm{G}/\mathrm{\mathbb{H}} \). Our proof describes explicitly the structure sheaf of \( \mathbbm{G}/\mathrm{\mathbb{H}} \), and reveals some new geometric features of the quotient, that include one which was desired by Brundan [2], and is shown in general, here for the first time.

This is a preview of subscription content, log in to check access.


  1. [1]

    L. Balduzzi, C. Carmeli, R. Fioresi, Quotients in supergeometry, arXiv:0805.3270 (2008).

  2. [2]

    J. Brundan, Modular representations of the supergroup Q(n), II, Pacific J. Math. 224 (2006), no. 1, 65–90.

    MathSciNet  Article  Google Scholar 

  3. [3]

    M. Demazure, P. Gabriel, Groupes Algébriques, Tome I, Masson & Cie, Paris; North-Holland, Amsterdam, 1970.

  4. [4]

    Y. Doi, Hopf extensions of algebras and Maschke type theorems, Israel J. Math. 72 (1990), no. 1–2, 99–108.

    MathSciNet  Article  Google Scholar 

  5. [5]

    M. Hoshi, A. Masuoka, Y. Takahashi, Hopf-algebraic techniques applied to super Lie groups over a complete field, arXiv:1706.02839v4 (2017).

  6. [6]

    J. C. Jantzen, Representations of Algebraic Groups, Pure and Applied Mathematics, Vol. 131, Academic Press, New York, 1987.

  7. [7]

    B. Kostant, Graded manifolds, graded Lie theory, and prequantization, Lecture Notes in Mathematics, Vol. 570, Springer-Verlag, Berlin, 1977, pp.177–306.

  8. [8]

    Yu. I. Manin, Gauge Field Theory and Complex Geometry, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Vol. 289, Springer-Verlag, Berlin, 1997.

  9. [9]

    A. Masuoka, The fundamental correspondences in super affine groups and super formal groups, J. Pure Appl. Algebra 202 (2005), no. 1–3, 284–312.

    MathSciNet  Article  Google Scholar 

  10. [10]

    A. Masuoka, Harish-Chandra pairs for algebraic affine supergroup schemes over an arbitrary field, Transform. Groups 17 (2012), no. 4, 1085–1121.

    MathSciNet  Article  Google Scholar 

  11. [11]

    A. Masuoka, Hopf algebraic techniques applied to super algebraic groups, in: Proceedings of Algebra Symposium (Hiroshima, 2013), Math. Soc. Japan, 2013, pp. 48–66.

  12. [12]

    A. Masuoka, T. Shibata, On functor points of affine supergroups, J. Algebra 503 (2018), 534–572.

    MathSciNet  Article  Google Scholar 

  13. [13]

    A. Masuoka, A. N. Zubkov, Quotient sheaves of algebraic supergroups are superschemes, J. Algebra 348 (2011), 135–170.

    MathSciNet  Article  Google Scholar 

  14. [14]

    A. Masuoka, A. N. Zubkov, Solvability and nilpotency for algebraic supergroups, J. Pure Appl. Algebra 221 (2017), no. 2, 339–365.

    MathSciNet  Article  Google Scholar 

  15. [15]

    A. Masuoka, A. N. Zubkov, The structure of general algebraic supergroups (tentative), in preparation.

  16. [16]

    S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Conf. Series in Math., Vol. 82, Amer. Math. Soc., Providence, RI, 1993.

  17. [17]

    U. Oberst, Affine Quotientenschemata nach affine, algebraischen Gruppen und induzierte Darstellungen, J. Algebra 44 (1977), no. 2, 503–538.

    MathSciNet  Article  Google Scholar 

  18. [18]

    T. Schmitt, Regular sequences in2-graded commutative algebra, J. Algebra 124 (1989), no. 1, 60–118.

    MathSciNet  Article  Google Scholar 

  19. [19]

    H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math. 72 (1990), no. 1–2, 167–195.

    MathSciNet  Article  Google Scholar 

  20. [20]

    M. E. Sweedler, Hopf Algebras, W. A. Benjamin, Inc., New York, 1969.

    Google Scholar 

  21. [21]

    M. Takeuchi, Formal schemes over fields, Comm. Algebra 5 (1977), no. 14, 1438–1528.

    MathSciNet  Article  Google Scholar 

  22. [22]

    M. Takeuchi, Relative Hopf modules—equivalences and freeness criteria, J. Algebra 60 (1979), no. 2, 452–471.

    MathSciNet  Article  Google Scholar 

  23. [23]

    E. G. Vishnyakova, On the structure of complex homogeneous supermanifolds, arXiv:0811.2581 (2008).

  24. [24]

    E. G. Vishnyakova, On complex Lie supergroups and split homogeneous supermanifolds, Transform. Groups 16 (2011), no. 1, 265–285.

    MathSciNet  Article  Google Scholar 

  25. [25]

    E. G. Vishnyakova, The splitting problem for complex homogeneous supermanifolds, J. Lie Theory 25 (2015), no. 2, 459–476.

    MathSciNet  MATH  Google Scholar 

  26. [26]

    A. N. Zubkov, Affine quotients of supergroups, Transform. Groups 14 (2009), no. 3, 713–745.

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to AKIRA MASUOKA.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Akira Masuoka is supported by JSPS Grant-in-Aid for Scientific Research (C) 17K05189.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article


Download citation