INTERSECTION MULTIPLICITY ONE FOR CLASSICAL GROUPS

Abstract

In this note we show that when G is a classical semi-simple algebraic group, B ⊂ G a Borel subgroup, and X = G/B, then the structure coefficients of the Belkale–Kumar product ⨀0 on H*(X, Z) are all either 0 or 1.

This is a preview of subscription content, log in to check access.

References

  1. [BB]

    S. Billey, T. Braden, Lower bounds for Kazhdan–Lusztig polynomials from patterns, Transform. Groups 8 (2003), no. 4, 321–332.

    MathSciNet  Article  Google Scholar 

  2. [BK]

    P. Belkale, S. Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math. 166 (2006), 185–228.

    MathSciNet  Article  Google Scholar 

  3. [BK2]

    P. Belkale, S. Kumar, Private communication.

  4. [Dix]

    J. Dixmier, Enveloping Algebras, Graduate Studies in Mathematics, Vol. 11, American Mathematical Society, Providence, RI, 1996.

  5. [D-W]

    R. Dewji, I. Dimitrov, A. McCabe, M. Roth, D. Wehlau, J. Wilson, Decomposing inversion sets of permutations and applications to faces of the Littlewood–Richardson cone, J. Algebraic Comb. 45 (2017), no. 4, 1173–1216.

    MathSciNet  Article  Google Scholar 

  6. [DR]

    I. Dimitrov, M. Roth, Cup products of line bundles on homogeneous varieties and generalized PRV components of multiplicity one, Algebra & Number Theory 11 (2017), no. 4, 767–815.

    MathSciNet  Article  Google Scholar 

  7. [Ko]

    B. Kostant, Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. of Math. (2) 74 (1961), 329–387.

    MathSciNet  Article  Google Scholar 

  8. [L]

    H.-F. Lai, On the topology of the even-dimensional complex quadrics, Proc. Amer. Math. Soc. 46 (1974), 419–425.

    MathSciNet  Article  Google Scholar 

  9. [Re1]

    N. Ressayre, Multiplicative formulas in Schubert calculus and quiver representation, Indag. Math. (N.S.) 22 (2011), no. 1–2, 87–102.

    MathSciNet  Article  Google Scholar 

  10. [Re2]

    N. Ressayre, Geometric invariant theory and generalized eigenvalue problem II, Annales de l'Institute Fourier 61 (2011), n°4, 1467–1491.

    MathSciNet  Article  Google Scholar 

  11. [Ri1]

    E. Richmond, A partial Horn recursion in the cohomology of flag varieties, J. Algebraic Combin. 30 (2009), no. 1, 1–17.

    MathSciNet  Article  Google Scholar 

  12. [Ri2]

    E. Richmond, A multiplicative formula for structure constants in the cohomology of flag varieties, Michigan Math. J. 61 (2012), no. 1, 3–17.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to MIKE ROTH.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by an NSERC grant.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DIMITROV, I., ROTH, M. INTERSECTION MULTIPLICITY ONE FOR CLASSICAL GROUPS. Transformation Groups 24, 1001–1014 (2019). https://doi.org/10.1007/s00031-018-9509-2

Download citation

Keywords

  • Cohomology of homogeneous spaces
  • roots and weights