Transformation Groups

, Volume 23, Issue 1, pp 149–183 | Cite as




For generic r = (r1,, rn) ∈ \( {\mathrm{\mathbb{R}}}_{+}^n \) the space ℳ(r) of n–gons in ℝ3 with edges of lengths r is a smooth, symplectic manifold. We investigate its Gromov width and prove that the expression 2π min {2r j , (∑ i ≠ j r i ) − r i |j = 1,  … , n} is the Gromov width of all (smooth) 5–gon spaces and of 6–gon spaces, under some condition on r\( {\mathrm{\mathbb{R}}}_{+}^6 \). The same formula constitutes a lower bound for all (smooth) spaces of 6–gons. Moreover, we prove that the Gromov width of ℳ(r) is given by the above expression when ℳ(r) is symplectomorphic to ℂℙ n − 3, for any n ≥ 4.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [C]
    A. C. Castro, Upper bound for the Gromov width of coadjoint orbits of compact Lie groups, J. Lie Theory 26 (2016), 821–860.MathSciNetMATHGoogle Scholar
  2. [CLS]
    D. Cox, J. Little, H. Schenck, Toric Varieties, Graduate Studies in Mathematics, Vol. 124, American Mathematical Society, Providence, RI, 2011.Google Scholar
  3. [FHS]
    M. Farber, J.-Cl. Hausmann, D. Schuetz, On the conjecture of Kevin Walker, J. Topol. Anal. 1 (2009), 65–86.MathSciNetCrossRefMATHGoogle Scholar
  4. [GM]
    I. M. Gelfand, R. D. MacPherson, Geometry in Grassmannians and a generalization of the dilogarithm, Adv. in Math. 44 (1982), 279–312.MathSciNetCrossRefMATHGoogle Scholar
  5. [HK1]
    J.-C. Hausmann, A. Knutson, Polygon spaces and Grassmannians, Enseign. Math. (2) 43 (1997), 281–321.Google Scholar
  6. [HK2]
    J.-C. Hausmann, A. Knutson, A limit of toric symplectic forms that has no periodic Hamiltonians, Geom. Funct. Anal. 10 (2000), 556–562.MathSciNetCrossRefMATHGoogle Scholar
  7. [KM]
    M. Kapovich, J. J. Millson, The symplectic geometry of polygons in Euclidean space, J. Differential Geom. 44 (1996), no. 3, 479–513.MathSciNetCrossRefMATHGoogle Scholar
  8. [NU]
    Y. Nohara, K. Ueda, Toric degenerations of integrable systems on Grassmannians and polygon spaces, Nagoya Math. J. 214 (2014), 125–168.MathSciNetCrossRefMATHGoogle Scholar
  9. [K]
    A. Kasprzyk, Toric Fano Varieties and Convex Polytopes, PhD Thesis, University of Bath, 2006.Google Scholar
  10. [KT]
    Y. Karshon, S. Tolman, The Gromov width of complex Grassmannians, Algebr. and Geom. Topol. 5 (2005), 911–922.MathSciNetCrossRefMATHGoogle Scholar
  11. [Kl]
    A. Klyachko, Spatial polygons and stable configurations of points in the projective line, in: Algebraic Geometry and its Applications (Yaroslavl’, 1992), Aspects Math., E25, Vieweg, Braunschweig, 1994, pp. 67–84.Google Scholar
  12. [L]
    E. Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995), 247–258.MathSciNetCrossRefMATHGoogle Scholar
  13. [LMS]
    J. Latschev, D. McDuff, F. Schlenk, The Gromov width of 4-dimensional tori, Geometry and Topology 17 (2013), 2813–2853.MathSciNetCrossRefMATHGoogle Scholar
  14. [Lu]
    G. Lu, Symplectic capacities of toric manifolds and related results, Nagoya Math. J. 181 (2006), 149–184.MathSciNetCrossRefMATHGoogle Scholar
  15. [M]
    A. Mandini, The Duistermaat–Heckman formula and the cohomology of moduli spaces of polygons, J. Symplectic Geom. 12 (2014), 171–213.MathSciNetCrossRefMATHGoogle Scholar
  16. [McD1]
    D. McDuff, Lectures on Symplectic Topology, IAS/Park City Math. Series, Vol.7, American Mathematical Society, 1998.Google Scholar
  17. [McD2]
    D.McDuff, Symplectic embeddings of 4-dimensional ellipsoids, J. Topol. 2 (2009), 1–22.Google Scholar
  18. [MS]
    D. McDuff, D. Salamon, J-holomorphic curves and symplectic topology, 2nd ed., American Mathematical Society Colloquium Publications, Vol. 52, American Mathematical Society, Providence, RI, 2004.Google Scholar
  19. [P]
    M. Pabiniak, Gromov width of non-regular coadjoint orbits of U(n), SO(2n) and SO(2n + 1), Math. Res. Lett. 21 (2014), 187–205.MathSciNetCrossRefMATHGoogle Scholar
  20. [Sch1]
    F. Schlenk, Embedding Problems in Symplectic Geometry, De Gruyter Expositions in Mathematics, Vol. 40, Walter de Gruyter, Berlin, 2005.Google Scholar
  21. [Sch2]
    F. Schlenk, Packing symplectic manifolds by hand, J. Symplectic Geom. 3 (2005), 313–340.MathSciNetCrossRefMATHGoogle Scholar
  22. [T]
    L. Traynor, Symplectic packing constructions, J. Differential Geom. 42, (1995), 411–429.MathSciNetCrossRefMATHGoogle Scholar
  23. [Z]
    M. Zoghi, The Gromov width of Coadjoint Orbits of Compact Lie Groups, PhD Thesis, University of Toronto, 2010.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Departamento de MatemáticaPUC-RioRio de JaneiroBrazil
  2. 2.Mathematisches InstitutUniversität zu KölnKölnGermany

Personalised recommendations