Advertisement

About reaction–diffusion systems involving the Holling-type II and the Beddington–DeAngelis functional responses for predator–prey models

  • F. Conforto
  • Laurent Desvillettes
  • C. Soresina
Article
  • 53 Downloads

Abstract

We consider in this paper a microscopic model (that is, a system of three reaction–diffusion equations) incorporating the dynamics of handling and searching predators, and show that its solutions converge when a small parameter tends to 0 towards the solutions of a reaction–cross diffusion system of predator–prey type involving a Holling-type II or Beddington–DeAngelis functional response. We also provide a study of the Turing instability domain of the obtained equations and (in the case of the Beddington–DeAngelis functional response) compare it to the same instability domain when the cross diffusion is replaced by a standard diffusion.

Keywords

Cross-diffusion equations Predator–prey equations Turing instability Turing patterns functional responses 

Mathematics Subject Classification

35B25 35B36 35K45 35K57 35Q92 92D25 

References

  1. 1.
    Holling, C.S.: The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 98, 5–86 (1966)CrossRefGoogle Scholar
  2. 2.
    Ivlev, V.: Experimental Ecology of the Feeding of Fishes, vol. 42. Yale University Press, New Haven (1961)Google Scholar
  3. 3.
    Beddington, J.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)CrossRefGoogle Scholar
  4. 4.
    DeAngelis, D.L., Goldstein, R., O’Neill, R.: A model for trophic interaction. Ecology 56, 881–892 (1975)CrossRefGoogle Scholar
  5. 5.
    Abrams, P.A., Ginzburg, L.R.: The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15(8), 337–341 (2000)CrossRefGoogle Scholar
  6. 6.
    Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations, vol. 11. World Scientific, Singapore (1998)Google Scholar
  7. 7.
    Zhang, X.-C., Sun, G.-Q., Jin, Z.: Spatial dynamics in a predator–prey model with Beddington–DeAngelis functional response. Phys. Rev. E 85(2), 021924 (2012)CrossRefGoogle Scholar
  8. 8.
    Haque, M.: Existence of complex patterns in the Beddington–DeAngelis predator–prey model. Math. Biosci. 239(2), 179–190 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Alonso, D., Bartumeus, F., Catalan, J.: Mutual interference between predators can give rise to turing spatial patterns. Ecology 83(1), 28–34 (2002)CrossRefGoogle Scholar
  10. 10.
    McGehee, E.A., Peacock-López, E.: Turing patterns in a modified Lotka–Volterra model. Phys. Lett. A 342(1), 90–98 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Malchow, H., Petrovskii, S.V., Venturino, E.: Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation. Chapman & Hall, London (2008)zbMATHGoogle Scholar
  12. 12.
    Petrovskii, S.V., Malchow, H.: A minimal model of pattern formation in a prey–predator system. Math. Comput. Modell. 29(8), 49–63 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Petrovskii, S.V., Malchow, H.: Wave of Chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor. Popul. Biol. 59(2), 157–174 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.-L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44(3), 311–370 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Metz, J.A., Diekmann, O.: The Dynamics of Physiologically Structured Populations, vol. 68. Springer, Berlin (1986)zbMATHGoogle Scholar
  16. 16.
    Geritz, S., Gyllenberg, M.: A mechanistic derivation of the DeAngelis–Beddington functional response. J. Theor. Biol. 314, 106–108 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Huisman, G., De Boer, R.J.: A formal derivation of the “Beddington” functional response. J. Theor. Biol. 185(3), 389–400 (1997)CrossRefGoogle Scholar
  18. 18.
    Pierre, M., Schmitt, D.: Blowup in reaction–diffusion systems with dissipation of mass. SIAM Rev. 42(1), 93–106 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Cañizo, J.A., Desvillettes, L., Fellner, K.: Improved duality estimates and applications to reaction–diffusion equations. Commun. Partial Differ. Equ. 39(6), 1185–1204 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Breden, M., Desvillettes, L., Fellner, K.: Smoothness of moments of the solutions of discrete coagulation equations with diffusion. Monatshefte für Mathematik 183(3), 437–463 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theor. Biol. 79(1), 83–99 (1979)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Desvillettes, L., Trescases, A.: New results for triangular reaction cross diffusion system. J. Math. Anal. Appl. 430(1), 32–59 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Murakawa, H.: A Relation Between Cross-Diffusion and Reaction–Diffusion. CiteSeer, University Park (2009)zbMATHGoogle Scholar
  24. 24.
    Izuhara, H., Mimura, M., et al.: Reaction–diffusion system approximation to the cross-diffusion competition system. Hiroshima Math. J. 38(2), 315–347 (2008)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Conforto, F., Desvillettes, L.: Rigorous passage to the limit in a system of reaction–diffusion equations towards a system including cross diffusion. Commun. Math. Sci 12(3), 457–472 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Bothe, D., Pierre, M.: The instantaneous limit for reaction–diffusion systems with a fast irreversible reaction. Discrete Contin. Dyn. Syst. Ser. S 8(1), 49–59 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Bothe, D., Pierre, M., Rolland, G.: Cross-diffusion limit for a reaction–diffusion system with fast reversible reaction. Commun. Partial Differ. Equ. 37(11), 1940–1966 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Hilhorst, D., Mimura, M., Ninomiya, H.: Fast reaction limit of competition–diffusion systems. Handb. Differ. Equ. Evolut. Equ. 5, 105–168 (2009)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Hilhorst, D., Van Der Hout, R., Peletier, L.: The fast reaction limit for a reaction–diffusion system. J. Math. Anal. Appl. 199(2), 349–373 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Hilhorst, D., Van Der Hout, R., Peletier, L.A.: Nonlinear diffusion in the presence of fast reaction. Nonlinear Anal. Theory Methods Appl. 41(5), 803–823 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Rolland, G.: Global existence and fast-reaction limit in reaction–diffusion systems with cross effects. Ph.D. thesis, École normale supérieure de Cachan-ENS Cachan; Technische Universität (Darmstadt, Allemagne) (2012)Google Scholar
  32. 32.
    Tulumello, E., Lombardo, M.C., Sammartino, M.: Cross-diffusion driven instability in a predator–prey system with cross-diffusion. Acta Appl. Math. 132(1), 621–633 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Iida, M., Mimura, M., Ninomiya, H.: Diffusion, cross-diffusion and competitive interaction. J. Math. Biol. 53(4), 617–641 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Desvillettes, L.: About entropy methods for reaction–diffusion equations. Rivista di Matematica dell’Università di Parma 7(7), 81–123 (2007)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Desvillettes, L., Fellner, K., Pierre, M., Vovelle, J.: Global existence for quadratic systems of reaction–diffusion. Adv. Nonlinear Stud. 7(3), 491–511 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Ladyzhenskaia, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type, vol. 23. American Mathematical Society, Providence (1988)Google Scholar
  37. 37.
    Moussa, A.: Some variants of the classical Aubin–Lions lemma. J. Evol. Equ. 16(1), 65–93 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Durrett, R., Levin, S.: The importance of being discrete (and spatial). Theor. Popul. Biol. 46(3), 363–394 (1994)zbMATHCrossRefGoogle Scholar
  39. 39.
    Gambino, G., Lombardo, M.C., Sammartino, M.: Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion. Math. Comput. Simul. 82(6), 1112–1132 (2012)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della TerraUniversità di MessinaMessinaItaly
  2. 2.Université Paris Diderot, IMJ-PRGParisFrance
  3. 3.CMAF-CIO Centro de Matemática, Aplicações Fundamentais e Investigação, Faculdade de CiênciasLisbonPortugal

Personalised recommendations