Well-posedness and fast-diffusion limit for a bulk–surface reaction–diffusion system

  • Stephan Hausberg
  • Matthias Röger


We analyze a certain class of coupled bulk–surface reaction–drift–diffusion systems arising in the modeling of signalling networks in biological cells. The coupling is by a nonlinear Robin-type boundary condition for the bulk variable and a corresponding source term on the cell boundary. For reaction terms with at most linear growth and under different regularity assumptions on the data we prove the existence of weak and classical solutions. In particular, we show that solutions grow at most exponentially with time. Furthermore, we rigorously derive an asymptotic reduction to a non-local reaction–drift–diffusion system on the membrane in the fast-diffusion limit.


Partial differential equations on surfaces Reaction–diffusion systems Signaling networks in cells 

Mathematics Subject Classification

35K51 35R01 35R35 35K20 92C37 


  1. 1.
    Anguige, K., Röger, M.: Global existence for a bulk/surface model for active-transport-induced polarisation in biological cells. J. Math. Anal. Appl. 448, 213–244 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aubin, T.: Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252. Springer, New York (1982)Google Scholar
  3. 3.
    Berestycki, H., Coulon, A.-C., Roquejoffre, J.-M., Rossi, L.: The effect of a line with nonlocal diffusion on Fisher–KPP propagation. Math. Models Methods Appl. Sci. 25, 2519–2562 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bothe, D., Köhne, M., Maier, S., Saal, J.: Global strong solutions for a class of heterogeneous catalysis models. J. Math. Anal. Appl. 445, 677–709 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chipot, M.: Elements of Nonlinear Analysis. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    Day, C. A., Kenworthy, A. K.: Tracking microdomain dynamics in cell membranes. In: Biochimica et biophysica acta 1788, pp. 245–253 (2009)Google Scholar
  7. 7.
    Elliott, C.M., Ranner, T.L.: Finite element analysis for a coupled bulk–surface partial differential equation. IMA J. Numer. Anal. 33, 377–402 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Elliott, C.M., Ranner, T., Venkataraman, C.: Coupled bulk–surface free boundary problems arising from a mathematical model of receptor–ligand dynamics. SIAM J. Math. Anal. 49, 360–397 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)Google Scholar
  10. 10.
    Fan, J., Sammalkorpi, M., Haataja, M.: Formation and regulation of lipid microdomains in cell membranes: theory, modeling, and speculation. FEBS Lett. 584, 1678–1684 (2010)CrossRefGoogle Scholar
  11. 11.
    Fellner, K., Latos, E., Tang, B.Q.: Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling. Ann. Inst. H. Poincarè Anal. Non Linèaire 35, 643–673 (2018)Google Scholar
  12. 12.
    Fellner, K., Rosenberger, S., Tang, B.Q.: Quasi-steady-state approximation and numerical simulation for a volume–surface reaction–diffusion system. Commun. Math. Sci. 14, 1553–1580 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fellner, K., Tang B.Q.: Entropy methods and convergence to equilibrium for volume-surface reaction-diffusion systems. In: Gonçalves, P., Soares, A. (eds.) From Particle Systems to Partial Differential Equations. PSPDE 2015. Springer Proceedings in Mathematics & Statistics, vol. 209. Springer, Cham, 153–176 (2017)Google Scholar
  14. 14.
    Friedmann, E., Neumann, R., Rannacher, R., et al.: Well-posedness of a linear spatio-temporal model of the JAK2/STAT5 signaling pathway. Commun. Math. Anal. 15, 76–102 (2013)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Garcke, H., Kampmann, J., Rätz, A., Röger, M.: A coupled surface–Cahn–Hilliard bulkdiffusion system modeling lipid raft formation in cell membranes. Math. Models Methods Appl. Sci 26, 1149–1189 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001)zbMATHGoogle Scholar
  17. 17.
    Glitzky, A., Mielke, A.: A gradient structure for systems coupling reaction–diffusion effects in bulk and interfaces. Z. Angew. Math. Phys. 64, 29–52 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)zbMATHGoogle Scholar
  19. 19.
    Hale, J.K., Sakamoto, K.: Shadow systems and attractors in reaction–diffusion equations. Appl. Anal. Int. J. 32, 287–303 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hausberg, S.: Mathematical analysis of a spatially coupled reaction–diffusion system for signaling networks in biological cells. Ph.D. thesis. Technische Universität Dortmund (2016)Google Scholar
  21. 21.
    Kavallaris, N.I., Suzuki, T.: On the dynamics of a non-local parabolic equation arising from the Gierer–Meinhardt system. Nonlinearity 30, 1734–1761 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Keener, J.P.: Activators and inhibitors in pattern formation. Stud. Appl. Math. 59, 1–23 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)CrossRefGoogle Scholar
  24. 24.
    Levine, H., Rappel, W.-J.: Membrane-bound Turing patterns. Phys. Rev. E 72, 061912 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Li, F., Ni, W.-M.: On the global existence and finite time blow-up of shadow systems. J. Differ. Equ. 247, 1762–1776 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Madzvamuse, A., Chung, A.H.W., Venkataraman, C.: Stability analysis and simulations of coupled bulk–surface reaction–diffusion systems. Proc. A. 471, 20140546 (2015)Google Scholar
  27. 27.
    Marciniak-Czochra, A., Härting, S., Karch, G., Suzuki, K.: Dynamical spike solutions in a nonlocal model of pattern formation. Nonlinearity 31, 1757 (2018)Google Scholar
  28. 28.
    Marciniak-Czochra, A., Mikelić, A.: Shadow limit for parabolic-ODE systems through a cut-off argument. In: Rad Hrvatske akademije znanosti i umjetnosti: Matemati.cke znanosti, pp. 99–116 (2017)Google Scholar
  29. 29.
    Mielke, A.: Thermomechanical modeling of energy–reaction–diffusion systems, including bulk–interface interactions. Discrete Contin. Dyn. Syst. Ser. S 6, 479–499 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Muller, N., Piel, M., Calvez, V., Voituriez, R., Gonçalves-Sá, J., Guo, C.-L., Jiang, X., Murray, A., Meunier, N.: A predictive model for yeast cell polarization in pheromone gradients. PLoS Comput. Biol. 12, e1004795 (2016)CrossRefGoogle Scholar
  31. 31.
    Nelson, W.J.: Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774 (2003)CrossRefGoogle Scholar
  32. 32.
    Novak, I.L., Gao, F., Choi, Y.-S., Resasco, D., Schaff, J.C., Slepchenko, B.M.: Diffusion on a curved surface coupled to diffusion in the volume: application to cell biology. J. Comput. Phys. 226, 1271–1290 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Pierre, M.: Global existence in reaction–diffusion systems with control of mass: a survey. Milan J. Math. 78, 417–455 (2010)Google Scholar
  34. 34.
    Rätz, A., Röger, M.: Turing instabilities in a mathematical model for signaling networks. J. Math. Biol. 65, 1215–1244 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Roubíček, T.: Nonlinear Partial Differential Equations with Applications. International Series of Numerical Mathematics, vol. 153, 2nd edn. Birkhäuser/Springer, Basel (2013)CrossRefzbMATHGoogle Scholar
  36. 36.
    Rätz, A., Röger, M.: Symmetry breaking in a bulk–surface reaction–diffusion model for signalling networks. Nonlinearity 27, 1805 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sharma, V., Morgan, J.: Global existence of solutions to reaction–diffusion systems with mass transport type boundary conditions. SIAM J. Math. Anal. 48, 4202–4240 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sharma, V., Morgan, J.: Uniform bounds for solutions to volume–surface reaction–diffusion systems. Differ. Integral Equ. 30, 423–442 (2017)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Teigen, K.E., Li, X., Lowengrub, J., Wang, F., Voigt, A.: A diffusion–interface approach for modelling transport, diffusion and adsorption/desorption of material quantities on a deformable interface. Commun. Math. Sci. 7, 1009–1037 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fakultät für MathematikTechnische Universität DortmundDortmundGermany

Personalised recommendations