A refined description of evolving interfaces in certain nonlinear wave equations

  • Mohammad El Smaily
  • Robert L. Jerrard


We improve on recent results that establish the existence of solutions of certain semilinear wave equations possessing an interface that roughly sweeps out a timelike surface of vanishing mean curvature in Minkowski space. Compared to earlier work, we present sharper estimates, in stronger norms, of the solutions in question.


Semilinear wave equations Hyperbolic Interface Timelike hypersurface 

Mathematics Subject Classification

35L71 35B25 74N20 


  1. 1.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. The Clarendon Press, Oxford University Press, New York (2000)zbMATHGoogle Scholar
  2. 2.
    Bellettini, G., Hoppe, J., Novaga, M., Orlandi, G.: Closure and convexity properties of closed relativistic strings. Complex Anal. Oper. Theory 4(3), 473–496 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bellettini, G., Novaga, M., Orlandi, G.: Time-like Lorentzian minimal submanifolds as singular limits of nonlinear wave equations. Phys. D 239(6), 335–339 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brendle, S.: Hypersurfaces in Minkowski space with vanishing mean curvature. Comm. Pure Appl. Math. 55(10), 1249–1279 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Coleman, S.: Fate of the false vacuum: semiclassical theory. Phys. Rev. D 15, 2929 (1977)CrossRefGoogle Scholar
  6. 6.
    Cuccagna, S.: On asymptotic stability in 3D of kinks for the \(\phi ^4\) model. Trans. Am. Math. Soc. 360(5), 2581–2614 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    de Mottoni, P., Schatzman, M.: Geometrical evolution of developed interfaces. Trans. Am. Math. Soc. 347(5), 1533–1589 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    del Pino, M., Kowalczyk, M., Wei, J.: On De Giorgi’s conjecture in dimension \(N\ge 9\). Ann. of Math. (2) 174(3), 1485–1569 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Federer, H.: Geometric Measure Theory Die Grundlehren der Mathematischen Wissenschaften, vol. 153. Springer, New York (1969)Google Scholar
  10. 10.
    Galvão Sousa, B., Jerrard, R .L.: Accelerating fronts in semilinear wave equations. Rend. Circ. Mat. Palermo (2) 64(1), 117–148 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jerrard, R.L.: Defects in semilinear wave equations and timelike minimal surfaces in Minkowski space. Anal. PDE 4(2), 285–340 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kibble, T.W.B.: Topology of cosmic domains and strings. J. Phys. A Math. Gen. 9(8), 1387–1398 (1976)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lindblad, H.: A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time. Proc. Am. Math. Soc. 132(4), 1095–1102 (2004). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Milbredt, O.: The Cauchy Problem for Membranes, Dissertation. Freie Universität, Berlin (2008)Google Scholar
  15. 15.
    Neu, J.C.: Kinks and the minimal surface equation in Minkowski space. Phys. D 43(2–3), 421–434 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pacard, F., Ritoré, M.: From constant mean curvature hypersurfaces to the gradient theory of phase transitions. J. Differ. Geom. 64(3), 359–423 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rotstein, H.G., Nepomnyashchy, A.A.: Dynamics of kinks in two-dimensional hyperbolic models. Phys. D 136(3–4), 245–265 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics & StatisticsUniversity of New BrunswickFrederictonCanada
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations