Stable solutions in potential mean field game systems

Article
  • 36 Downloads

Abstract

We introduce the notion of stable solution in mean field game theory: they are locally isolated solutions of the mean field game system. We prove that such solutions exist in potential mean field games and are local attractors for some learning procedures.

Mathematics Subject Classification

35Q91 49J20 49L25 

References

  1. 1.
    Ambrosio, L., Gigli, N., Savarè, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008)Google Scholar
  2. 2.
    Bardi, M., Cirant, M.: Uniqueness of solutions in mean field games with several populations and Neumann conditions. Preprint arXiv:1709.02158
  3. 3.
    Bardi, M., Fischer, M.: On non-uniqueness and uniqueness of solutions in some finite-horizon mean field games. Preprint arXiv:1707.00628
  4. 4.
    Brown, G.W.: Iterative solution of games by fictitious play. Act. Anal. Prod. Allocation 13(1), 374–376 (1951)Google Scholar
  5. 5.
    Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton–Jacobi Equations and Optimal Control. Birkhäuser, Boston (2004)MATHGoogle Scholar
  6. 6.
    Cannarsa, P., Tessitore, M. E.: Optimality conditions for boundary control problems of parabolic type. In: Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena (Vorau, 1993). International Series of Numerical Mathematics, vol. 118, pp. 79–96. Birkhäuser, Basel (1994)Google Scholar
  7. 7.
    Cardaliaguet, P., Graber, J., Porretta, A., Tonon, D.: Second order mean field games with degenerate diffusion and local coupling. Nonlinear Differ. Equ. Appl. 22(5), 1287–1317 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cardaliaguet, P., Hadikhanloo, S.: Learning in Mean Field Games: The Fictitious Play. In: ESAIM: COCV 23, pp. 569–591 (2017)Google Scholar
  9. 9.
    Cardaliaguet, P., Delarue, F., Lasry, J.M., Lions, P.L.: The master equation and the convergence problem in mean field games. Pre-print arXiv:1509.02505
  10. 10.
    Cirant, M., Tonon, D.: Time-dependent focusing Mean-Field Games: the sub-critical case. Preprint arXiv:1704.04014
  11. 11.
    Gomes, D., Nurbekyan, L., Prazeres, M.: One-dimensional stationary mean-field games with local coupling. Preprint arXiv:1611.08161
  12. 12.
    Hadikhanloo, S.: Learning in anonymous nonatomic games with applications to first-order mean field games. Preprint arXiv:1704.00378
  13. 13.
    Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)MathSciNetMATHGoogle Scholar
  14. 14.
    Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence, RI (1967)Google Scholar
  15. 15.
    Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lions, P.L.: In Cours au Collège de France. http://www.college-de-france.fr
  19. 19.
    Lions, J.L., Malgrange, B.: Sur l’unicité rétrograde dans les problèmes mixtes paraboliques. Math. Scand. 8, 277–286 (1960)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Monderer, D., Shapley, L.S.: Fictitious play property for games with identical interests. J. Econ. Theory 68(1), 258–265 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.LMPTUniversité de ToursToursFrance
  2. 2.PSL Research University, CNRS, CeremadeUniversité Paris-DauphineParisFrance

Personalised recommendations