Spanning subspace configurations


A spanning configuration in the complex vector space \({{\mathbb {C}}}^k\) is a sequence \((W_1, \dots , W_r)\) of linear subspaces of \({{\mathbb {C}}}^k\) such that \(W_1 + \cdots + W_r = {{\mathbb {C}}}^k\). We present the integral cohomology of the moduli space of spanning configurations in \({{\mathbb {C}}}^k\) corresponding to a given sequence of subspace dimensions. This simultaneously generalizes the classical presentation of the cohomology of partial flag varieties and the more recent presentation of a variety of spanning line configurations defined by the author and Pawlowski. This latter variety of spanning line configurations plays the role of the flag variety for the Haglund–Remmel–Wilson Delta Conjecture of symmetric function theory.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Bergeron, F.: Algebraic Combinatorics and Coinvariant Spaces. CMS Treatises in Mathematics. Canadian Mathematical Society.(2009)

  2. 2.

    Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. 57, 115–207 (1953)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Fulton, W.: Young Tableaux. London Mathematical Society Student Texts No. 35. Cambridge University Press, Cambridge (1997)

  4. 4.

    Garsia, A., Haglund, J., Remmel, J., Yoo, M.: A proof of the Delta Conjecture when \(q = 0\). Ann. Combin. 23, 317–333 (2019)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Haglund, J., Luoto, K., Mason, S., van Willigenburg, S.: Refinements of the Littlewood–Richardson rule. Trans. Am. Math. Soc. 363, 1665–1686 (2011)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Haglund, J., Remmel, J., Wilson, A.T.: The Delta Conjecture. Trans. Am. Math. Soc. 370, 4029–4057 (2018)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Haglund, J., Rhoades, B., Shimozono, M.: Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture. Adv. Math. 329, 851–915 (2018)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Pawlowski, B., Rhoades, B.: A flag variety for the Delta Conjecture. Trans. Am. Math. Soc. 372, 8195–8248 (2019)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Rhoades, B.: Ordered set partition statistics and the Delta Conjecture. J. Combin. Theory Ser. A 154, 172–217 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Rhoades, B., Wilson, A.T.: Line configurations and \(r\)-Stirling partitions. J. Comb. 10(3), 411–431 (2019)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Wilson, A.T.: An extension of MacMahon’s Equidistribution Theorem to ordered multiset partitions. Electron. J. Combin. 23(1), 835–868 (2016)

    MathSciNet  Article  Google Scholar 

Download references


The author is grateful to Sara Billey, Brendan Pawlowski, Vic Reiner, and Andy Wilson for many helpful conversations. The author thanks François Bergeron for asking how to generalize \(X_{n,k}\) to higher-dimensional subspaces. The author also thanks the anonymous referees for helpful comments which improved the exposition of this paper. The author was partially supported by NSF Grants DMS-1500838 and DMS-1953781.

Author information



Corresponding author

Correspondence to Brendon Rhoades.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rhoades, B. Spanning subspace configurations. Sel. Math. New Ser. 27, 8 (2021).

Download citation


  • Subspace configuration
  • Cohomology
  • Schubert calculus
  • Affine paving
  • Ordered set cover

Mathematics Subject Classification

  • 05E99
  • 14M15