Skip to main content
Log in

Affine Grassmannians in \(\mathbb A^1\)-homotopy theory

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let k be a field. Denote by \(\mathcal {S}\mathrm {pc}{}(k)_*\) the unstable, pointed motivic homotopy category and by \(R^{\mathbb A^1} \Omega _{\mathbb {G}_m}: \mathcal {S}\mathrm {pc}{}(k)_*\rightarrow \mathcal {S}\mathrm {pc}{}(k)_*\) the (\(\mathbb A^1\)-derived) \({\mathbb {G}_m}\)-loops functor. For a k-group G, denote by \(\mathrm {Gr}_{G}\) the affine Grassmannian of G. If G is isotropic reductive, we provide a canonical motivic equivalence \(R^{\mathbb A^1} \Omega _{\mathbb {G}_m}G \simeq \mathrm {Gr}_{G}\). We use this to compute the motive \(M(R^{\mathbb A^1} \Omega _{\mathbb {G}_m}G) \in \mathcal {DM}(k, \mathbb {Z}[1/e])\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asok, A., Hoyois, M., Wendt, M.: Affine representability results in \({\mathbb{A}}^{1}\) -homotopy theory, I: Vector bundles. Duke Math. J. 166(10), 1923–1953 (2017)

    Google Scholar 

  2. Asok, A., Hoyois, M., Wendt, M.: Affine representability results in \(\mathbb{A}^1\)-homotopy theory, II: principal bundles and homogeneous spaces. Geometry Topol. 22(2), 1181–1225 (2018)

    Google Scholar 

  3. Asok, A., Hoyois, M., Wendt, M.: Affine representability results in \(\mathbb{A}^1\)-homotopy theory III: finite fields and complements. arXiv preprint arXiv:1807.03365 (2018)

  4. Beauville, A., Laszlo, Y.: Un lemme de descente. Comptes Rendus de l’Academie des Sciences-Serie I-Mathematique 320(3), 335–340 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Fedorov, R.: On the Grothendieck–Serre conjecture on principal bundles in mixed characteristic. arXiv preprint arXiv:1501.04224 (2015)

  6. Fedorov, R., Panin, I.: A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields. Publications mathématiques de l’IHÉS 122(1), 169–193 (2015)

    Article  MathSciNet  Google Scholar 

  7. Haines, T.J., Richarz, T.: The test function conjecture for parahoric local models. arXiv:1801.07094 (2018)

  8. Kelly, S.: Voevodsky motives and \(l\)dh descent. Astérisque 391 (2017)

  9. Lurie, J.: Higher topos theory, vol. 170. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  10. Morel, F., Voevodsky, V.: \(\mathbb{A}^1\)-homotopy theory of schemes. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 90(1), 45–143 (1999)

    Google Scholar 

  11. Panin, I.: Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a finite field. arXiv preprint arXiv:1707.01767 (2017)

  12. Pannekoek, R.: Rational points on open subsets of affine space. MathOverflow. https://mathoverflow.net/q/264212 (version: 2017-03-09)

  13. Pressley, A., Segal, G.: Loop Groups. D. Reidel Publishing Co., Dordrech (1984)

    MATH  Google Scholar 

  14. The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu (2018)

  15. Voevodsky, V.: Triangulated categories of motives over a field. In: Cycles, Transfers, and Motivic Homology Theories, vol. 143, pp. 188–238 (2000)

  16. Voevodsky, V.: Unstable motivic homotopy categories in Nisnevich and cdh-topologies. J. Pure Appl. Algebra 214(8), 1399–1406 (2010)

    Article  MathSciNet  Google Scholar 

  17. Zhu, X.: An introduction to affine Grassmannians and the geometric Satake equivalence. arXiv preprint arXiv:1603.05593 (2016)

Download references

Acknowledgements

I would like to thank Timo Richarz for patiently explaining many basic facts about affine Grassmannians, and in particular for explaining to me Lemma 13. I would also like to thank Maria Yakerson for comments on a draft, and Marc Hoyois for an enlightening discussion about the Grothendieck–Serre conjecture and the ldh topology. Finally I would like to thank an anonymous referee for suggesting a simplified exposition of Sect. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Bachmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachmann, T. Affine Grassmannians in \(\mathbb A^1\)-homotopy theory. Sel. Math. New Ser. 25, 25 (2019). https://doi.org/10.1007/s00029-019-0471-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0471-1

Mathematics Subject Classification

Navigation