Skip to main content
Log in

Filtrations on graph complexes and the Grothendieck–Teichmüller Lie algebra in depth two

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We establish an isomorphism between the Grothendieck–Teichmüller Lie algebra \(\mathfrak {grt}_1\) in depth two modulo higher depth and the cohomology of the two-loop part of the graph complex of internally connected graphs \(\mathsf {ICG}(1)\). In particular, we recover all linear relations satisfied by the brackets of the conjectural generators \(\sigma _{2k+1}\) modulo depth three by considering relations among two-loop graphs. The Grothendieck–Teichmüller Lie algebra is related to the zeroth cohomology of Kontsevich’s graph complex \(\mathsf {GC}_2\) via Willwacher’s isomorphism. We define a descending filtration on \(H^0(\mathsf {GC}_2)\) and show that the degree two components of the corresponding associated graded vector spaces are isomorphic under Willwacher’s map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, A., Torossian, C.: The Kashiwara–Vergne conjecture and Drinfeld’s associators. Ann. Math. 172(2), 415–463 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arone, G., Turchin, V.: Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots. Ann. Inst. Fourier (Grenoble) 65(1), 1–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brown, F.: Mixed tate motives over \({\mathbb{Z}}\). Ann. Math. 175(2), 949–976 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conant, J., Gerlits, F., Vogtmann, K.: Cut vertices in commutative graphs. Q. J. Math. 56(3), 321–336 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conant, J., Costello, J., Turchin, V., Weed, P.: Two-loop part of the rational homotopy of spaces of long embeddings. J. Knot Theory Ramif. 23(4), 1450018 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and on agroup that is closely connected with \(({\bar{Q}}/\text{ Q })\). Leningr. Math. J. 2(4), 829–860 (1991)

    Google Scholar 

  7. Felder, M.: Internally connected graphs and the Kashiwara–Vergne Lie algebra. Lett. Math. Phys. 108(6), 1407–1441 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goncharov, A.: The dihedral Lie algebras and Galois symmetries of \(\pi _1^{(l)}({\mathbb{P}}^1-(\{0,\infty \}\cup \mu _N))\). Duke Math. J. 110(3), 397–487 (2001)

    Article  MathSciNet  Google Scholar 

  9. Ihara, Y.: Some arithmetic aspects of Galois actions in the pro-\(p\) fundamental group of \({\mathbb{P}}^1-\{0,1,\infty \}\). In: Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), volume 70 of Proc. Sympos. Pure Math., pages 247–273. Amer. Math. Soc., Providence, RI (2002)

  10. Kontsevich, M.: Formal (non)commutative symplectic geometry. The Gel\(\prime \)fand Mathematical Seminars. 1990–1992, pp. 173–187. Birkhäuser Boston, Boston, MA (1993)

  11. Kontsevich M.: Feynman diagrams and low-dimensional topology. In: First European Congress of Mathematics, Vol. II (Paris, 1992), volume 120 of Progr. Math., pages 97–121. Birkhäuser, Basel (1994)

  12. Kontsevich, M.: Formality conjecture. In: Deformation theory and symplectic geometry (Ascona, 1996), volume 20 of Math. Phys. Stud., pages 139–156. Kluwer Acad. Publ., Dordrecht (1997)

  13. Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48(1), 35–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lambrechts, P., Volić, I.: Formality of the little \(N\)-disks operad. Mem. Am. Math. Soc. 230(1079), viii+116 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Schneps, L.: On the Poisson bracket on the free Lie algebra in two generators. J. Lie Theory 16(1), 19–37 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Ŝevera, P., Willwacher, T.: Equivalence of formalities of the little discs operad. Duke Math. J. 160(1), 175–206 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Willwacher, T.: M. Kontsevich’s graph complex and the Grothendieck–Teichmüller Lie algebra. Invent. Math. 200(3), 671–760 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Felder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felder, M. Filtrations on graph complexes and the Grothendieck–Teichmüller Lie algebra in depth two. Sel. Math. New Ser. 24, 2063–2092 (2018). https://doi.org/10.1007/s00029-018-0416-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0416-0

Keywords

Mathematics Subject Classification

Navigation