Skip to main content
Log in

Dynamical stochastic higher spin vertex models

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We introduce a new family of integrable stochastic processes, called dynamical stochastic higher spin vertex models, arising from fused representations of Felder’s elliptic quantum group \(E_{\tau , \eta } ({\mathfrak {s}}{\mathfrak {l}}_2)\). These models simultaneously generalize the stochastic higher spin vertex models, studied by Corwin–Petrov and Borodin–Petrov, and are dynamical in the sense of Borodin’s recent stochastic interaction round-a-face models. We provide explicit contour integral identities for observables of these models (when run under specific types of initial data) that characterize the distributions of their currents. Through asymptotic analysis of these identities in a special case, we evaluate the scaling limit for the current of a dynamical version of a discrete-time partial exclusion process. In particular, we show that its scaling exponent is 1 / 4 and that its one-point marginal converges (in a sense of moments) to that of a non-trivial random variable, which we determine explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggarwal, A.: Current fluctuations of the stationary ASEP and stochastic Six-Vertex model. Duke Math. J. 167, 269–384 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal, A., Borodin, A.: Phase transitions in the ASEP and stochastic Six-Vertex model, To appear in Ann. Prob., preprint, arXiv:1607.08684

  3. Alimohammadi, M., Karimipour, V., Korrami, M.: Exact solution of a one-parameter family of asymmetric exclusion processes. Phys. Rev. E 57, 6370 (1998)

    Article  MathSciNet  Google Scholar 

  4. Barraquand, G., Corwin, I.: Random-walk in beta-distributed random environment. Prob. Theory and Rel. Fields 167, 1057–1116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barraquand, G., Corwin, I.: The \(q\)-Hahn asymmetric exclusion process. Ann. Appl. Prob. 26, 2304–2356 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  7. Bogoliubov, N.M., Bullough, R.K.: A \(q\)-Deformed completely integrable bose gas model. J. Phys. A 25, 4057–4071 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borodin, A.: Determinantal point processes. In: Akemann, G., Baik, J., Francesco, P. (eds.) Oxford Handbook of Random Matrix Theory, pp. 231–249. Oxford University Press, Oxford (2011)

    Google Scholar 

  9. Borodin, A.: On a family of rational symmetric functions. Adv. Math. 306, 973–1018 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borodin, A.: Schur dynamics of the schur processes. Adv. Math. 228, 2268–2291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borodin, A.: Stochastic higher spin six vertex model and macdonald measures. J. Math. Phys. 59, 023301 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Borodin, A.: Symmetric elliptic functions, IRF models, and dynamic exclusion processes, preprint, arXiv:1701.05239

  13. Borodin, A., Corwin, I.: Discrete time \(q\)-TASEPs. Int. Math. Res. Notices 499–537, 2015 (2015)

    MATH  Google Scholar 

  14. Borodin, A., Corwin, I.: Macdonald processes. Prob. Theory Rel. Fields 158, 225–400 (2014)

    Article  Google Scholar 

  15. Borodin, A., Corwin, I., Ferrari, P L.: Anisotropic \((2+1)\)d Growth and Gaussian Limits of \(q\)-Whittaker Processes, To appear in Prob. Theory and Rel. Fields, preprint, arXiv:1612.00321

  16. Borodin, A., Corwin, I., Gorin, V.: Stochastic six-vertex model. Duke Math. J. 165, 563–624 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Borodin, A., Ferrari, P.L.: Anisotropic growth of random surfaces in \(2 + 1\) dimensions. Comm. Math. Phys. 325, 603–684 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Borodin, A., Gorin, V., Rains, E.M.: \(q\)-Distributions on boxed plane partitions. Sel. Math. 16, 731–789 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for symmetric groups. J. Am. Math. Soc. 13, 491–515 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Borodin, A., Petrov, L.: Higher spin six-vertex models and rational symmetric functions, To appear in Sel. Math., preprint, http://arxiv.org/pdf/1601.05770v1.pdf

  21. Borodin, A., Petrov, L.: Inhomogeneous exponential jump model, To appear in Prob. Theory and Rel. Fields, preprint, arXiv:1703.03857

  22. Borodin, A., Wheeler, M.: Spin \(q\)-Whittaker Polynomials, preprint, arXiv:1701.06292

  23. Corwin, I.: The Kardar–Parisi–Zhang Equation and Universality Class. Random Matrices Theory Appl. 1, 1130001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Corwin, I.: The \(q\)-Hahn boson process and \(q\)-Hahn TASEP. Int. Math. Res. Notices 14, 5577–5603 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Corwin, I.: The \((q, \mu , \nu )\)-Boson Process and \((q, \mu , \nu )\)-TASEP, preprint, arXiv:1401.3321

  26. Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. Commun. Math. Phys. 343, 651–700 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Corwin, I., Seppäläinen, T., Shen, H.: The Strict–Weak lattice polymer. J. Stat. Phys. 160, 1027–1053 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly solvable SOS models: local height probabilities and theta function identities. Nucl. Phys. B 290, 231–273 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly solvable SOS models II: proof of the star-triangle relation and combinatorial identities. Adv. Stud. Pure Math. 16, 17–122 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Date, E., Jimbo, M., Miwa, T., Okado, M.: Fusion of the eight-vertex SOS model. Lett. Math. Phys. 12, 209–215 (1986)

    Article  MathSciNet  Google Scholar 

  31. Dimitrov, E.: Six-vertex models and the gue-corners process, preprint, arXiv:1610.06893

  32. Felder, G.: Conformal field theory and integrable systems associated with elliptic curves. Proc. ICM Birkhaeuser 94, 1247–1255 (1994)

    MATH  Google Scholar 

  33. Felder, G., Varchenko, A.: Algebraic Bethe Ansatz for the elliptic quantum group \(E_{\tau, \eta } ({\mathfrak{s}}{\mathfrak{l}}_2)\). Nucl. Phys. B 480, 485–503 (1996)

    Article  MATH  Google Scholar 

  34. Felder, G., Varchenko, A.: On representations of the elliptic quantum group \(E_{\tau, \eta } ({\mathfrak{s}}{\mathfrak{l}}_2)\). Comm. Math. Phys. 181, 741–761 (1996)

    Article  MathSciNet  Google Scholar 

  35. Frenkel, I.B., Turaev, V.G.: Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions. In: Arnold, V.I., Gelfand, I.M., Retakh, V.S., Smirnov, M. (eds.) The Arnold–Gelfand Mathematical Seminars, pp. 171–204. Birkhäuser, Boston (1997)

  36. Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  37. Ghosal, P.: Hall–Littlewood-PushTASEP and its KPZ limit. Preprint arXiv:1701.07308

  38. Gwa, L.-H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett. 68, 725–728 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kipnis, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  40. Kirillov, A.N., Reshetikhin, N.Y.: Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum. J. Phys. A 20, 1565–1585 (1987)

    Article  MathSciNet  Google Scholar 

  41. Kirillov, A.N., Reshetikhin, N.Y.: Representations of the algebra \(U_q (sl_2)\), \(q\)-orthogonal polynomials, and invariants of links. In: Infinite Dimensional Lie Algebras and Groups. Advances in Theoretical and Mathematical Physics, vol. 7, pp. 285–339. World Scientific, Singapore (1988)

  42. Koelink, E., van Norden, Y.: Pairings and actions for dynamical quantum groups. Adv. Math. 208, 1–39 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Koelink, E., van Norden, Y., Rosengren, H.: Elliptic \(U(2)\) quantum group and elliptic hypergeometric series. Commun. Math. Phys. 245, 519–537 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kulish, P., Reshetikhin, N.Y., Sklyanin, E.: Yang–Baxter equation and representation theory: I. Lett. Math. Phys. 5, 393–403 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  45. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  46. Mangazeev, V.V.: On the Yang–Baxter equation for the six-vertex model. Nucl. Phys. B 882, 70–96 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Okounkov, A.: Infinite wedge and random partitions. Sel. Math. 7, 55–81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Okounkov, A., Reshetikhin, N.: Correlation function of schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16, 581–603 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Orr, D., Petrov, L.: Stochastic higher spin vertex model and \(q\)-TASEPs. Adv. Math. 317, 473–525 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Povolotsky, A.: On Integrability of zero-range chipping models with factorized steady state. J. Phys. A 46, 465205 (2013)

  51. Rains, E.M.: \(BC_n\)-symmetric abelian functions. Duke Math. J. 135, 99–180 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rains, E.M.: Transformations of elliptic hypergeometric integrals. Ann. Math. 171, 169–243 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Reuveni, S., Eliazar, I., Yechali, U.: Asymmetric inclusion process. Phys. Rev. E 84, 041101 (2011)

    Article  Google Scholar 

  54. Rezakhanlou, F.: Hydrodynamical limit for attractive particles systems on \({\mathbb{Z}}^d\). Commun. Math. Phys. 140, 417–448 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rosengren, H.: Elliptic Hypergeometric Functions. Preprint arXiv:1608.06161

  56. Rosengren, H.: Felder’s elliptic quantum group and elliptic hypergeometric series on root systems \(A_n\). Int. Math. Res. Not. 2861–2920, 2010 (2011)

    MATH  Google Scholar 

  57. Sasamoto, T., Wadati, M.: Exact results for one-dimensional totally asymmetric exclusion models. J. Phys. A 31, 6057–6071 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  58. Sasamoto, T., Wadati, M.: One-dimensional asymmetric diffusion without exclusion. Phys. Rev. E 58, 4181 (1998)

    Article  Google Scholar 

  59. Schlosser, M.: Elliptic enumeration of nonintersecting lattice paths. J. Combin. Theory Ser. A 114, 505–521 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Spiridnov, V.P.: Essays on the theory of elliptic hypergeometric functions. Russ. Math. Surv. 63, 405–472 (2008)

    Article  MathSciNet  Google Scholar 

  61. Spiridnov, V.P., Zhedanov, A.: Spectral transformation chains and some new biorthogonal rational functions. Commun. Math. Phys. 210, 49–83 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  62. Tarasov, V., Varchenko, A.: Geometry of \(q\)-hypergeometric functions. Quantum Affine Algebras Elliptic Quantum Groups Asterisque 246, 1–135 (1997)

    MATH  Google Scholar 

  63. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  64. Vető, B.: Tracy–Widom limit of \(q\)-Hahn TASEP. Electron. J. Probab. 20, 1–22 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol Aggarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, A. Dynamical stochastic higher spin vertex models. Sel. Math. New Ser. 24, 2659–2735 (2018). https://doi.org/10.1007/s00029-018-0411-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0411-5

Keywords

Mathematics Subject Classification

Navigation