The Galois group of the category of mixed Hodge–Tate structures



The category \(\mathrm{MHT}_{\mathbb {Q}}\) of mixed Hodge–Tate structures over \({\mathbb {Q}}\) is a mixed Tate category. Thanks to the Tannakian formalism it is equivalent to the category of graded comodules over a commutative graded Hopf algebra \({{{\mathcal {H}}}}_\bullet = \oplus _{n=0}^\infty {{{\mathcal {H}}}}_n\) over \({\mathbb {Q}}\). Since the category \(\mathrm{MHT}_{\mathbb {Q}}\) has homological dimension one, \({{{\mathcal {H}}}}_\bullet \) is isomorphic to the commutative graded Hopf algebra provided by the tensor algebra of the graded vector space given by the sum of \(\mathrm{Ext}_{\mathrm{MHT}_{\mathbb {Q}}}^1({\mathbb {Q}}(0), {\mathbb {Q}}(n)) = {\mathbb {C}}/(2\pi i)^n{\mathbb {Q}}\) over \(n>0\). However this isomorphism is not natural in any sense, e.g. does not exist in families. We give a natural construction of the Hopf algebra \({{{\mathcal {H}}}}_\bullet \). Namely, let \({\mathbb {C}}^*_{\mathbb {Q}}:={\mathbb {C}}^* \otimes {\mathbb {Q}}\). Set
$$\begin{aligned} {{{\mathcal {A}}}}_\bullet ({\mathbb {C}}):= {\mathbb {Q}}\oplus \bigoplus _{n=1}^\infty {\mathbb {C}}_{\mathbb {Q}}^* \otimes _{\mathbb {Q}}{\mathbb {C}}^{\otimes n-1}. \end{aligned}$$
We provide it with a commutative graded Hopf algebra structure, such that \({{{\mathcal {H}}}}_\bullet = {{{\mathcal {A}}}}_\bullet ({\mathbb {C}})\). This implies another construction of the big period map \({{{\mathcal {H}}}}_n \longrightarrow {\mathbb {C}}_{\mathbb {Q}}^* \otimes {\mathbb {C}}\) from Goncharov (JAMS 12(2):569–618, 1999. arXiv:alg-geom/9601021, Annales de la Faculte des Sciences de Toulouse XXV(2–3):397–459, 2016. arXiv:1510.07270). Generalizing this, we introduce a notion of a Tate dg-algebra (Rk(1)), and assign to it a Hopf dg-algebra \({{{\mathcal {A}}}}_\bullet (R)\). For example, the Tate algebra \(({\mathbb {C}}, 2\pi i {\mathbb {Q}})\) gives rise to the Hopf algebra \(\mathcal{A}_\bullet ({\mathbb {C}})\). Another example of a Tate dg-algebra \((\Omega _X^\bullet , 2\pi i{\mathbb {Q}})\) is provided by the holomorphic de Rham complex \(\Omega _X^\bullet \) of a complex manifold X. The sheaf of Hopf dg-algebras \({{{\mathcal {A}}}}_\bullet (\Omega _X^\bullet )\) describes a dg-model of the derived category of variations of Hodge–Tate structures on X. The cobar complex of \(\mathcal{A}_\bullet (\Omega _X^\bullet )\) is a dg-model for the rational Deligne cohomology of X. We consider a variant of our construction which starting from Fontaine’s period rings \(\mathrm{B}_{\mathrm{crys}}\)/\(\mathrm{B}_{\mathrm{st}}\) produces graded/dg Hopf algebras which we relate to the p-adic Hodge theory.

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anschütz, J.: Breuil–Kisin–Fargues modules with complex multiplication. arXiv:1707.08857
  2. 2.
    Beilinson, A.A., Deligne, P.: Unpublished notes on polylogarithms (1992)Google Scholar
  3. 3.
    Beilinson, A.A.: Higher regulators and values of L-functions. J. Soviet Math. 30, 2036–2070 (1985)CrossRefMATHGoogle Scholar
  4. 4.
    Beilinson, A.A.: Notes on the absolute Hodge cohomology. Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Part I, II (Boulder, Colo., 1983). Contemporary Mathematics, vol. 55, pp. 35–68. American Mathematical Society, Providence, RI (1986)Google Scholar
  5. 5.
    Beilinson, A.A., Goncharov, A.B., Schechtman, V.V, Varchenko, A.N.: Aomoto dilogarithms, mixed Hodge structures and motivic cohomology of pairs of triangles on the plane. The Grothendieck Festschrift, vol. I, pp. 135–172. Prog. Math. 86. Birkhauser Boston, Boston, MA (1990)Google Scholar
  6. 6.
    Bhatt, B., Morrow, P., Scholze P.: Integral p-adic Hodge theory. arXiv:1602.03148
  7. 7.
    Bloch, S.: Applications of the dilogarithm function in algebraic K-theory and algebraic geometry. Proceedings of the International Symposium on Algebraic Geometry, Kyoto, Kinokuniyo Book Store Ltd., Tokyo, Japan (1977)Google Scholar
  8. 8.
    Bloch, S.: Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. Irvine lecture notes. CRM monograph series. AMS (2000). Original preprint of 1978Google Scholar
  9. 9.
    Deligne, P., Goncharov, A.B.: Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. Cole Norm. Sup. (4) 38(1), 1–56 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fargues, L.: Quelques résultats et conjectures concernant la courbe.
  11. 11.
    Goncharov, A.B.: Polylogarithms in arithmetic and geometry. Proceedings of the International Congress of Mathematicians. (Zürich, 1994), vol. 1, pp. 374–387. (1995)
  12. 12.
    Goncharov, A.B.: Volumes of hyperbolic manifolds and mixed Tate motives. JAMS 12(2), 569–618 (1999) arXiv:alg-geom/9601021
  13. 13.
    Goncharov, A.B., Zhu, G.: A paper in preparationGoogle Scholar
  14. 14.
    Goncharov, A.B.: Exponential complexes, period morphisms, and characteristic classes. Annales de la Faculte des Sciences de Toulouse XXV(2–3), 397–459 (2016). arXiv:1510.07270 MATHGoogle Scholar
  15. 15.
    Nekovar, J., Niziol, W.: Syntomic cohomology and p-adic regulators for varieties over p-adic fields. arXiv:1309.7620
  16. 16.
    Niziol, W.: Geometric syntomic cohomology and vector bundles on the Fargues–Fontaine curve. arXiv:1605.07216
  17. 17.
    Niziol, W.: On syntomic regulators I: constructions. arXiv:1607.04975

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations