Selecta Mathematica

, Volume 24, Issue 3, pp 2831–2839 | Cite as

On quadratic irrationals with bounded partial quotients

  • J. Bourgain


It is shown that for some explicit constants \(c>0, A>0\), the asymptotic for the number of positive non-square discriminants \(D<x\) with fundamental solution \(\varepsilon _D<x^{\frac{1}{2}+\alpha }\), \(0<\alpha <c\), remains preserved if we require moreover \(\mathbb Q(\sqrt{D})\) to contain an irrational with partial quotients bounded by A.

Mathematics Subject Classification

11D09 11L05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourgain, J., Kontorovich, A.: On Zaremba’s conjecture. Ann. Math. 180(1), 137–196 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Fouvry, E.: On the size of the fundamental solution of Pell equation. Rein. Angew. Math. 717, 1–33 (2016)MathSciNetMATHGoogle Scholar
  3. 3.
    Hooley, C.: On the Pellian equation and the class number of indefinite binary quadratic forms. J. für die Rein. und Angew. Math. 353, 98–131 (1984)MathSciNetMATHGoogle Scholar
  4. 4.
    Mercat, R.: Construction de fractions continues périodiques uniformément bornées. J. Th. Nr. Bordx. 25(1), 111–146 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Magee, M.,  Oh, H.,  Winter, D.: Uniform congruence counting for Schottky semigroups in \(SL_2({\mathbb{z}})\). arxiv:1601.03705v3. (2017)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations