Selecta Mathematica

, Volume 24, Issue 2, pp 1411–1452 | Cite as

Homological mirror symmetry for hypersurface cusp singularities

  • Ailsa Keating
Open Access


We study versions of homological mirror symmetry for hypersurface cusp singularities and the three hypersurface simple elliptic singularities. We show that the Milnor fibres of each of these carries a distinguished Lefschetz fibration; its derived directed Fukaya category is equivalent to the derived category of coherent sheaves on a smooth rational surface \(Y_{p,q,r}\). By using localization techniques on both sides, we get an isomorphism between the derived wrapped Fukaya category of the Milnor fibre and the derived category of coherent sheaves on a quasi-projective surface given by deleting an anti-canonical divisor D from \(Y_{p,q,r}\). In the cusp case, the pair \((Y_{p,q,r}, D)\) is naturally associated to the dual cusp singularity, tying into Gross, Hacking and Keel’s proof of Looijenga’s conjecture.

Mathematics Subject Classification

53D37 (primary) 14J33 (secondary) 


  1. 1.
    Abouzaid, M., Seidel, P.: Lefschetz fibration methods in wrapped Floer cohomology (in preparation) Google Scholar
  2. 2.
    Abouzaid, M., Smith, I.: Khovanov homology from Floer cohomology. arXiv:1504.01230
  3. 3.
    Abouzaid, M.: A cotangent fibre generates the Fukaya category. Adv. Math. 228(2), 894–939 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Abouzaid, M., Auroux, D., Efimov, A., Katzarkov, L., Orlov, D.: Homological mirror symmetry for punctured spheres. J. Am. Math. Soc. 26(4), 1051–1083 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Abouzaid, M., Auroux, D., Katzarkov, L.: Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces. arXiv:1205.0053
  6. 6.
    Abouzaid, M., Seidel, P.: An open string analogue of Viterbo functoriality. Geom. Topol. 14(2), 627–718 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A’Campo, N.: Real deformations and complex topology of plane curve singularities. Ann. Fac. Sci. Toulouse Math. 8(1), 5–23 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Akbulut, S., Arikan, M.F.: Stabilizations via Lefschetz Fibrations and Exact Open Books. arXiv:1112.0519
  9. 9.
    Arnold, V.I., Goryunov, V.V., Lyashko, O.V., Vasil’ev, V.A.: Singularity theory. I. Springer, Berlin (1998). Translated from the 1988 Russian original by A. Iacob, Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences [ıt Dynamical systems. VI, Encyclopaedia Math. Sci., 6, Springer, Berlin, 1993; MR1230637 (94b:58018)]Google Scholar
  10. 10.
    Bondal, A., Orlov, D.: Derived categories of coherent sheaves. In: Proceedings of the International Congress of Mathematicians, vol. II (Beijing, 2002), pp. 47–56. Higher Ed. Press, Beijing (2002)Google Scholar
  11. 11.
    Burban, I., Drozd, Y.: Coherent sheaves on rational curves with simple double points and transversal intersections. Duke Math. J. 121(2), 189–229 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carl, M., Pumperla, M., Siebert, S.: A tropical view on Landau–Ginzburg models.
  13. 13.
    Chan, K., Ueda, K.: Dual torus fibrations and homological mirror symmetry for \(A_n\)-singlarities. Commun. Number Theory Phys. 7(2), 361–396 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Drozd, Y.A., Greuel, G.-M.: Tame and wild projective curves and classification of vector bundles. J. Algebra 246(1), 1–54 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Etgü, T., Lekili, Y.: Koszul duality patterns in Floer theory. arXiv:1502.07922
  16. 16.
    Giroux, E., Pardon, J.: Existence of Lefschetz fibrations on Stein and Weinstein domains. arXiv:1411.6176
  17. 17.
    Gross, M., Hacking, P., Keel, S.: Mirror symmetry for log Calabi–Yau surfaces I. arXiv:1106.4977
  18. 18.
    Gross, M., Hacking, P., Keel, S.: Mirror symmetry for log Calabi–Yau surfaces I. arXiv:1106.4977v1
  19. 19.
    Gross, M., Hacking, P., Keel, S.: Birational geometry of cluster algebras. Algebr. Geom. 2(2), 137–175 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gross, M., Siebert, B.: Mirror symmetry via logarithmic degeneration data. I. J. Differ. Geom. 72(2), 169–338 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gross, M., Siebert, B.: Mirror symmetry via logarithmic degeneration data. II. J. Algebr. Geom. 19(4), 679–780 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gross, M., Siebert, B.: From real affine geometry to complex geometry. Ann. Math. 174(3), 1301–1428 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Huybrechts, D.: Fourier–Mukai transforms in algebraic geometry. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2006)Google Scholar
  24. 24.
    Keating, A.: Lagrangian tori in four-dimensional Milnor fibres. arXiv:1405.0744
  25. 25.
    Kontsevich, M.: Lectures at ENS Paris, Spring (1998) (Unpublished) Google Scholar
  26. 26.
    Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), pp. 120–139. Birkhäuser, Basel (1995)Google Scholar
  27. 27.
    Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. In: Symplectic Geometry and Mirror Symmetry (Seoul, 2000), pp. 203–263. World science publisher, River Edge (2001)Google Scholar
  28. 28.
    Kontsevich, M., Soibelman, Y.: Affine structures and non-Archimedean analytic spaces. The Unity of Mathematics. Progress in mathematics, vol. 244, pp. 321–385. Birkhäuser Boston, Boston (2006)Google Scholar
  29. 29.
    Lekili, Y., Perutz, T.: Arithmetic mirror symmetry for the 2-torus. arXiv:1211.4632
  30. 30.
    Lekili, Y., Polishchuk, A.: Arithmetic mirror symmetry for genus 1 curves with \(n\) marked points. arXiv:1601.06141
  31. 31.
    Lekili, Y., Perutz, T.: Fukaya categories of the torus and Dehn surgery. Proc. Natl. Acad. Sci. USA 108(20), 8106–8113 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Looijenga, E.: Rational surfaces with an anticanonical cycle. Ann. Math. 114(2), 267–322 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Lunts, V.A., Orlov, D.O.: Uniqueness of enhancement for triangulated categories. J. Am. Math. Soc. 23(3), 853–908 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Orlov, D.O.: Projective bundles, monoidal transformations, and derived categories of coherent sheaves. Izv. Ross. Akad. Nauk Ser. Mat. 56(4), 852–862 (1992)zbMATHGoogle Scholar
  35. 35.
    Saito, K.: Einfach-elliptische Singularitäten. Invent. Math. 23, 289–325 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Seidel, P.: Homological mirror symmetry for the quartic surface. Mem. Am. Math. Soc. 236(1116), vii+129 (2015)Google Scholar
  37. 37.
    Seidel, P.: Fukaya \(A_\infty \) structures associated to Lefschetz fibrations. II. arXiv:1404.1352
  38. 38.
    Seidel, P.: Lecture notes on Categorical Dynamics and Symplectic Topology.
  39. 39.
    Seidel, P.: Graded Lagrangian submanifolds. Bull. Soc. Math. Fr. 128(1), 103–149 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Seidel, P.: More about vanishing cycles and mutation. In: Symplectic Geometry and Mirror Symmetry (Seoul, 2000), pp. 429–465. World science publisher, River Edge (2001)Google Scholar
  41. 41.
    Seidel, P.: Vanishing cycles and mutation. In: European Congress of Mathematics, vol. II (Barcelona, 2000). Progress in mathematics, vol. 202, pp. 65–85. Birkhäuser, Basel (2001)Google Scholar
  42. 42.
    Seidel, P.: \(A_\infty \)-subalgebras and natural transformations. Homol. Homotopy Appl. 10(2), 83–114 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Seidel, P: Fukaya categories and Picard-Lefschetz theory. In: Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2008)Google Scholar
  44. 44.
    Seidel, P.: Fukaya \(A_\infty \)-structures associated to Lefschetz fibrations. I. J. Symplectic Geom. 10(3), 325–388 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Shende, V., Treumann, D., Williams, H.: On the combinatorics of exact Lagrangian surfaces. arXiv:1603.07449
  46. 46.
    Symington, M.: Four dimensions from two in symplectic topology. Topology and Geometry of Manifolds (Athens. GA, 2001). Proceedings of symposia in pure mathematics, vol. 71, pp. 153–208. American mathematical society, Providence (2003)Google Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1. CambridgeUK

Personalised recommendations