Skip to main content
Log in

Derived non-archimedean analytic spaces

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We propose a derived version of non-archimedean analytic geometry. Intuitively, a derived non-archimedean analytic space consists of an ordinary non-archimedean analytic space equipped with a sheaf of derived rings. Such a naive definition turns out to be insufficient. In this paper, we resort to the theory of pregeometries and structured topoi introduced by Jacob Lurie. We prove the following three fundamental properties of derived non-archimedean analytic spaces:

  1. (1)

    The category of ordinary non-archimedean analytic spaces embeds fully faithfully into the \(\infty \)-category of derived non-archimedean analytic spaces.

  2. (2)

    The \(\infty \)-category of derived non-archimedean analytic spaces admits fiber products.

  3. (3)

    The \(\infty \)-category of higher non-archimedean analytic Deligne–Mumford stacks embeds fully faithfully into the \(\infty \)-category of derived non-archimedean analytic spaces. The essential image of this embedding is spanned by n-localic discrete derived non-archimedean analytic spaces.

We will further develop the theory of derived non-archimedean analytic geometry in our subsequent works. Our motivations mainly come from intersection theory, enumerative geometry and mirror symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambozzi, F., Ben-Bassat, O.: Dagger Geometry as Banach Algebraic Geometry. arXiv:1502.01401 (2015)

  2. Ben-Bassat, O., Kremnizer, K.: Non-Archimedean Analytic Geometry as Relative Algebraic Geometry. arXiv:1312.0338 (2013)

  3. Berkovich, V.G.: Spectral Theory and Analytic Geometry Over Non-Archimedean Fields, Volume 33 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1990)

  4. Berkovich, V.G.: Étale cohomology for non-Archimedean analytic spaces. Inst. Hautes Études Sci. Publ. Math. 78, 5–161 (1994). (1993)

  5. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis, Volume 261 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1984). (A systematic approach to rigid analytic geometry)

  6. Conrad, B.: Descent for coherent sheaves on rigid-analytic spaces. Preprint (2003)

  7. Conrad, B.: Several approaches to non-Archimedean geometry. In: Savitt, D., Thakur, D.S. (eds.) \(p\)-Adic Geometry. Volume 45 of University Lecture Series, pp. 9–63. American Mathematical Society, Providence (2008)

  8. Cox, D.A., Katz, S.: Mirror Symmetry and Algebraic Geometry, Volume 68 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1999)

  9. Elkik, R.: Solutions d’équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm. Sup. 6(4), 553–603 (1974). (1973)

  10. Fresnel, J., van der Put, M.: Rigid Analytic Geometry and Its Applications, Volume 218 of Progress in Mathematics. Birkhäuser Boston Inc, Boston (2004)

  11. Gabber, O., Ramero, L.: Almost Ring Theory. Lecture Notes in Mathematics, vol. 1800. Springer, Berlin (2003)

  12. Gross, M.: Tropical Geometry and Mirror Symmetry, Volume 114 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2011)

  13. Gross, M., Hacking, P., Keel, S.: Mirror Symmetry for Log Calabi–Yau Surfaces I. Publications mathématiques de l’IHÉS, pp. 1–104 (2015)

  14. Gross, M., Siebert, B.: From real affine geometry to complex geometry. Ann. Math. (2) 174(3), 1301–1428 (2011)

  15. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry, Volume 1 of Clay Mathematics Monographs. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, With a preface by Vafa (2003)

  16. Huber, R.: A generalization of formal schemes and rigid analytic varieties. Math. Z. 217(4), 513–551 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huber, R.: Étale Cohomology of Rigid Analytic Varieties and Adic Spaces. Aspects of Mathematics, E30. Friedr. Vieweg & Sohn, Braunschweig (1996)

  18. Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. In: Fukaya, K., Oh, Y.-G., Ono, K., Tian, G. (eds.) Symplectic Geometry and Mirror Symmetry (Seoul, 2000). pp. 203–263. World Scientific Publishing, River Edge (2001)

  19. Kontsevich, M., Soibelman, Y.: Affine structures and non-Archimedean analytic spaces. In: Etingof, P., Retakh, V., Singer, I.M., (eds.) The Unity of Mathematics. Volume 244 of Progress in Mathematics, pp. 321–385. Birkhäuser Boston, Boston (2006)

  20. Lurie, J.: Derived Algebraic Geometry. Ph.D. thesis, Massachusetts Institute of Technology (2004)

  21. Lurie, J.: Higher Topos Theory, Volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton (2009)

  22. Lurie, J.: DAG IX: Closed Immersions. Preprint (2011)

  23. Lurie, J.: DAG V: Structured Spaces. Preprint (2011)

  24. Lurie, J.: DAG VII: Spectral Schemes. Preprint (2011)

  25. Lurie, J.: DAG VIII: Quasi-Coherent Sheaves and Tannaka Duality Theorems. Preprint (2011)

  26. Lurie, J.: Higher Algebra. Preprint (2012)

  27. Paugam, F.: Overconvergent Global Analytic Geometry. arXiv:1410.7971 (2014)

  28. Porta, M.: Comparison Results for Deligne–Mumford Stacks. arXiv:1507.00573 (2015)

  29. Porta, M.: Derived Complex Analytic Geometry I: GAGA Theorems. arXiv:1506.09042 (2015)

  30. Porta, M.: Derived Complex Analytic Geometry II: Square-Zero Extensions. arXiv:1507.06602 (2015)

  31. Porta, M., Yu, T.Y.: Higher analytic stacks and GAGA theorems. Adv. Math. 302, 351–409 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Porta, M., Yu, T.Y.: Representability Theorem in Derived Analytic Geometry (2016). In preparation

  33. Raynaud, M.: Géométrie analytique rigide d’après Tate, Kiehl,\(\cdots \). In: Table Ronde d’Analyse non archimédienne (Paris, 1972). pp. 319–327. Bull. Soc. Math. France, Mém. No. 39–40. Soc. Math. France, Paris (1974)

  34. The Stacks Project Authors: Stacks Project. http://stacks.math.columbia.edu (2013)

  35. Tate, J.: Rigid analytic spaces. Invent. Math. 12, 257–289 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  36. Toën, B.: Derived Algebraic Geometry. arXiv:1401.1044 (2014)

  37. Toën, B., Vezzosi, G.: Homotopical algebraic geometry. I. Topos theory. Adv. Math. 193(2), 257–372 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Toën, B., Vezzosi, G.: Homotopical algebraic geometry. II. Geometric stacks and applications. Mem. Am. Math. Soc. 193(902), x+224 (2008)

  39. Voisin, C.: Symétrie miroir, volume 2 of Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, Paris (1996)

  40. Yau, S.-T. (ed.): Essays on Mirror Manifolds. International Press, Hong Kong (1992)

    MATH  Google Scholar 

  41. Yu, T.Y.: Gromov Compactness in Non-Archimedean Analytic Geometry. arXiv:1401.6452 (2014) (To appear in Journal für die reine und angewandte Mathematik (Crelle))

  42. Yu, T.Y.: Balancing conditions in global tropical geometry. Ann. l’Inst. Fourier 65(4), 1647–1667 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yu, T.Y.: Tropicalization of the moduli space of stable maps. Math Z. 281(3), 1035–1059 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yu, T.Y.: Enumeration of holomorphic cylinders in log Calabi–Yau surfaces. I. Math. Ann. 366(3–4), 1649–1675 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yu, T.Y.: Enumeration of Holomorphic Cylinders in Log Calabi–Yau Surfaces. II. Positivity, Integrality and the Gluing Formula. arXiv:1608.07651 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Yue Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porta, M., Yu, T.Y. Derived non-archimedean analytic spaces. Sel. Math. New Ser. 24, 609–665 (2018). https://doi.org/10.1007/s00029-017-0310-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0310-1

Keywords

Mathematics Subject Classification

Navigation