Regularity and separation from potential barriers for the Cahn–Hilliard equation with singular potential

Article
  • 15 Downloads

Abstract

We discuss regularity and separation from potential barriers of solutions of the Cahn–Hilliard equation with singular potentials. Then we show that the same results can be obtained also for the non-isothermal, conserved Caginalp system.

Keywords

Cahn–Hilliard equation Caginalp model Singular potentials Separation property Convergence to steady states 

Mathematics Subject Classification

35K55 35B40 80A22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Abels and M. Wilke, Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy, Nonlinear Anal., 67:3176–3193 2007.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    D. Brochet, D. Hilhorst and A. Novick-Cohen, Maximal attractors and inertial sets for a conserved phase-field model. Adv. Differ. Equ., 1:547–578, 1996.MathSciNetMATHGoogle Scholar
  3. 3.
    G. Caginalp, An analysis of a phase field model of a free boundary. Arch. Rational Mech. Anal., 92:205–246, 1986.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn–Hilliard models as asymptotic limits. IMA J. Appl. Math., 44:77–94, 1990.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28:258–267, 1958.CrossRefGoogle Scholar
  6. 6.
    L.  Cherfils, A. Miranville and S. Zelik, The Cahn–Hilliard equation with logarithmic potentials, Milan J. Math., 79: 561–596, 2011.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    R. Chill, E. Fašangová and J. Prüss, Convergence to steady states of solutions of the Cahn–Hilliard equation with dynamic boundary conditions. Math. Nachr., 279:1448–1462, 2006.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    A. Debussche and L. Dettori, On the Cahn–Hilliard equation with a logarithmic free energy, Nonlinear Anal. TMA, 24:1491–1514, 1995.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    C.M. Elliott and S. Luckhaus, A generalized equation for phase separation of a multi-component mixture with interfacial free energy, Preprint SFB 256 Bonn No. 195, 1991.Google Scholar
  10. 10.
    E. Feireisl, F. Issard-Roch and H. Petzeltová, Long-time behaviour and convergence towards equilibria for a conserved phase field model, Discrete Cont. Dyn. Systems, 10:239–252, 2004.MathSciNetMATHGoogle Scholar
  11. 11.
    A. Miranville and S. Zelik, Robust exponential attractors for Cahn–Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27:545–582, 2003.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. Miranville and S. Zelik, The Cahn–Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Cont. Dyn. Systems, 28:275–310, 2010.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Operators, Walter de Gruyter, Berlin, New York, 1996. CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsAalto University School of Science and TechnologyAaltoFinland
  2. 2.Institute of Mathematics of the Czech Academy of SciencesPrague 1Czech Republic

Personalised recommendations