The hydrological function of a large chain-of-ponds: a wetland system with intermittent surface flows

Abstract

Like many wetlands globally, the Mulwaree River chain-of-ponds system exists in two dichotomous states characterised by the presence or absence of surface flow connecting large, deep, permanently inundated ponds. We develop a conceptual model of hydrological function of this chain-of-ponds system combining surface and subsurface water levels, 2H and 18O stable isotopes and 222Rn as a groundwater tracer over a period of time that incorporated extended dry periods and large rainfall events. During high-flow or flood events, ponds are connected by flow along connecting channels and preferential flow paths. The water column is fully mixed to depths of up to 7 m. During high-flow, water level in the ponds can be greater than the water level in the surrounding floodplain aquifer, producing a hydraulic gradient away from the ponds, reflecting a losing wetland system. During no-flow periods, connecting channels and preferential flow paths are dry. A thermocline develops within the ponds and surface waters become enriched in 2H and 18O with evaporation losses. During periods of no-flow, increases in water level beyond atmospheric flux often occur during winter. Only small groundwater inflows enter the ponds from the floodplain aquifer. The hydrological function of this chain-of-ponds system is delicately balanced making it potentially sensitive to changes in climate that alter rainfall and evaporation rates, and any local-scale groundwater interference activities. Efforts to conserve and protect this system, and the aquatic ecosystems it supports, will be critical into the future.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ali G, Haque A, Basu NB, Badiou P, Wilson H (2017) Groundwater-driven wetland-stream connectivity in the prairie pothole region: inferences based on electrical conductivity data. Wetlands 37:773–785. https://doi.org/10.1007/s13157-017-0913-5

    Article  Google Scholar 

  2. Geoscience Australia (2015) Goulburn Town LiDAR 5 metre. Commonwealth of Australia (Geoscience Australia), Canberra https://elevation.fsdf.org.au/. doi: 10.4225/25/5652419862E23

  3. Botha GA, Devilliers JM, Vogel JC (1990) Cyclicity of erosion, colluvial sedimentation and palaeosol formation in Quaternary hillslope deposits from northern Natal, South Africa. Palaeoecol Afr Surr Isl 21:195–210

    Google Scholar 

  4. Brierley GJ, Cohen T, Fryirs K, Brooks A (1999) Post-European changes to the fluvial geomorphology of Bega catchment, Australia: implications for river ecology. Freshwat Biol 41:839–848. https://doi.org/10.1046/j.1365-2427.1999.00397.x

    Article  Google Scholar 

  5. Bureau of Meteorology (2017) Climate data online. Commonwealth of Australia (Bureau of Meteorology), Canberra. https://www.bom.gov.au/climate/data/

  6. Butzer KW, Helgren DM (2005) Livestock, land cover, and environmental history: the Tablelands of New South Wales, Australia, 1820–1920. Ann Assoc Am Geog 95:80–111. https://doi.org/10.1111/j.1467-8306.2005.00451.x

    Article  Google Scholar 

  7. Calhoun AJK, Mushet DM, Bell KP, Boix D, Fitzsimons JA, Isselin-Nondedeu F (2017) Temporary wetlands: challenges and solutions to conserving a ‘disappearing’ ecosystem. Biol Conserv 211:3–11. https://doi.org/10.1016/j.biocon.2016.11.024

    Article  Google Scholar 

  8. Cartwright I, Gilfedder B (2015) Mapping and quantifying groundwater inflows to Deep Creek (Maribyrnong catchment, SE Australia) using 222Rn, implications for protecting groundwater-dependant ecosystems. Appl Geochem 52:118–129. https://doi.org/10.1016/j.apgeochem.2014.11.020

    CAS  Article  Google Scholar 

  9. Cartwright I, Morgenstern U (2016) Using tritium to document the mean transit time and sources of water contributing to a chain-of-ponds river system: implications for resource protection. Appl Geochem 75:9–19. https://doi.org/10.1016/j.apgeochem.2016.10.007

    CAS  Article  Google Scholar 

  10. Cattin M-F, Blandenier G, Banašek-Richter C, Bersier L-F (2003) The impact of mowing as a management strategy for wet meadows on spider (Araneae) communities. Biol Conserv 113:179–188. https://doi.org/10.1016/S0006-3207(02)00297-5

    Article  Google Scholar 

  11. Cecil LD, Green JR (2000) Radon-222. In: Cook PG, Herczeg AL (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4557-6_6

    Google Scholar 

  12. Cook PG (2013) Estimating groundwater discharge to rivers from river chemistry surveys. Hydrol Process 27:3694–3707. https://doi.org/10.1002/hyp.9493

    CAS  Article  Google Scholar 

  13. Cook PG, Böhlke J-K (2000) Determining Timescales for Groundwater Flow and Solute Transport. In: Cook PG, Herczeg AL (eds) Environmental Tracers in Subsurface Hydrology. Springer US, Boston, MA, pp 1–30. doi: 10.1007/978-1-4615-4557-6_1

  14. Cowley KL, Fryirs KA, Hose GC (2016) Identifying key sedimentary indicators of geomorphic structure and function of upland swamps in the Blue Mountains for use in condition assessment and monitoring. CATENA 147:564–577. https://doi.org/10.1016/j.catena.2016.08.016

    CAS  Article  Google Scholar 

  15. Doody TM, Barron OV, Dowsley K, Emelyanova I, Fawcett J, Overton IC, Pritchard JL, Van Dijk AIJM, Warren G (2017) Continental mapping of groundwater dependent ecosystems: a methodological framework to integrate diverse data and expert opinion. J Hydrol Region Stud 10:61–81. https://doi.org/10.1016/j.ejrh.2017.01.003

    Article  Google Scholar 

  16. Dowdy A, Abbs D, Bhend J, Chiew F, Church J, Ekström M, Kirono D, Lenton A, Lucas C, McInnes K (2015) East Coast Cluster Report. In: Ekström M, Whetton P, Gerbing C, Grose M, Webb L, Risbey J (eds) Climate change in Australia projections for Australia's natural resource management regions: Cluster reports. CSIRO and Bureau of Meteorology, Australia, https://www.climatechangeinaustralia.gov.au/en/publications-library/cluster-reports/. Accessed 20 June 2017.

  17. Erskine WD, Melville MD (2008) Geomorphic and stratigraphic complexity: holocene alluvial history of upper Wollombi Brook, Australia. Geogr Ann: Ser A, Phys Geogr 90:19–35. https://doi.org/10.1111/j.1468-0459.2008.00331.x

    Article  Google Scholar 

  18. Evans M, Warburton J (2007) Geomorphology of Upland Peat: erosion, form and landscape change. Wiley-Blackwell, Chichester. doi: 10.1002/9780470798003.ch1

  19. Eyles RJ (1977) Birchams Creek: the transition from a chain of ponds to a gully. Aust Geogr Stud 15:146–157. https://doi.org/10.1111/j.1467-8470.1977.tb00094.x

    Article  Google Scholar 

  20. Ferone JM, Devito KJ (2004) Shallow groundwater–surface water interactions in pond–peatland complexes along a Boreal Plains topographic gradient. J Hydrol 292:75–95. https://doi.org/10.1016/j.jhydrol.2003.12.032

    Article  Google Scholar 

  21. Fetter CW (2000) Applied hydrogeology. Prentice hall, Upper Saddle River

    Google Scholar 

  22. Fryirs K, Brierley G (1998) The character and age structure of valley fills in upper Wolumla Creek catchment, south coast, New South Wales, Australia. Earth Surf Process Landforms 23:271–287. https://doi.org/10.1002/(sici)1096-9837(199803)23:3<271:aid-esp867>3.0.co;2-5

    Article  Google Scholar 

  23. Fryirs K, Gough J, Hose GC (2014) The geomorphic character and hydrological function of an upland swamp, Budderoo plateau, southern highlands, NSW, Australia. Phys Geogr 35:313–334. https://doi.org/10.1080/02723646.2014.890092

    Article  Google Scholar 

  24. Fryirs KA, Brierley GJ, Hancock F, Cohen TJ, Brooks AP, Reinfelds I, Cook N, Raine A (2018) Tracking geomorphic recovery in process-based river management. Land Degrad Dev 29:3221–3244. https://doi.org/10.1002/ldr.2984

    Article  Google Scholar 

  25. Gat JR, Gonfiantini R (1981) Stable isotope hydrology Deuterium and oxygen-18 in the water cycle vol Technical reports series; no. 210. International Atomic Energy Agency (IAEA), Vienna, https://inis.iaea.org/search/search.aspx?orig_q=RN:13677657

  26. Gilvear DJ, Bradley C (2009) Hydrological Dynamics II: groundwater and hydrological connectivity. In: Maltby E, Barker T (eds) The Wetlands Handbook. Blackwell Publishing Ltd. doi: 10.1002/9781444315813.ch7

  27. Gore AJP (1983) Mires: swamp, bog, fen, and moor. In: Gore AJP (ed) Ecosystems of the world 4A. Elsevier, Amsterdam, p 440

    Google Scholar 

  28. Grose M, Abbs D, Bhend J, Chiew F, Church J, Ekström M, Kirono D, Lenton A, Lucas C, McInnes K (2015) Southern Slopes Cluster Report. In: Ekström M, Whetton P, Gerbing C, Grose M, Webb L, Risbey J (eds) Climate change in Australia projections for Australia’s natural resource management regions: Cluster reports. CSIRO and Bureau of Meteorology, Australia, https://www.climatechangeinaustralia.gov.au/en/publications-library/cluster-reports/. Accessed 20 June 2017.

  29. Hancock F, Fryirs K, Healy M, Raine A (2018) Towards identifying geomorphic rarity and vulnerability use of River Styles in high ecological value aquatic ecosystems. In: Vietz GJ, Rutherfurd ID (eds) Proceedings of the 9th Australian Stream Management Conference, 12–15 August, Hobart, Tasmania, 2018. River Basin Management Society, Melbourne, Victoria, pp 705–712

  30. Hardwick L (2019) Functional ecological processes in upland swamps and chain of ponds systems in the Blue Mountains and Southern Highlands of New South Wales, Australia. PhD thesis, Macquarie University.

  31. Hazell D, Osborne W, Lindenmayer D (2003) Impact of post-European stream change on frog habitat: southeastern Australia. Biodivers Conserv 12:301–320. https://doi.org/10.1023/A:1021999518939

    Article  Google Scholar 

  32. Hughes CE, Crawford J (2013) Spatial and temporal variation in precipitation isotopes in the Sydney Basin, Australia. J Hydrol 489:42–55. https://doi.org/10.1016/j.jhydrol.2013.02.036

    CAS  Article  Google Scholar 

  33. Minitab Inc. (2014) Minitab 17 Statistical Software. (www.minitab.com), State College, PA

  34. Jacobson G, Abell RS, Jankowski J (1991) Groundwater and surface water interaction at Lake George, New South Wales. BMR J Aust Geol Geoph 12:161–190 https://data.gov.au/dataset/6f36d659-f96b-4341-92d2-495109f0e5b8

  35. Jasechko S, Birks SJ, Gleeson T, Wada Y, Fawcett PJ, Sharp ZD, McDonnell JJ, Welker JM (2014) The pronounced seasonality of global groundwater recharge. Water Resour Res 50:8845–8867. https://doi.org/10.1002/2014WR015809

    Article  Google Scholar 

  36. Johnston P, Brierley G (2006) Late quaternary river evolution of floodplain pockets along Mulloon Creek, New South Wales, Australia. The Holocene 16:661–674. https://doi.org/10.1191/0959683606hl962rp

    Article  Google Scholar 

  37. Jolly ID, McEwan KL, Holland KL (2008) A review of groundwater–surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology 1:43–58. https://doi.org/10.1002/eco.6

    CAS  Article  Google Scholar 

  38. Kerstel E, Gianfrani L (2008) Advances in laser-based isotope ratio measurements: selected applications. Appl Phys B 92:439–449. https://doi.org/10.1007/s00340-008-3128-x

    CAS  Article  Google Scholar 

  39. Leaney FW, Herczeg AL (2006) A rapid field extraction method for determination of radon-222 in natural waters by liquid scintillation counting. Limnol Oceanogr Methods 4:254–259. https://doi.org/10.4319/lom.2006.4.254

    CAS  Article  Google Scholar 

  40. Lis G, Wassenaar LI, Hendry MJ (2008) High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal Chem 80:287–293. https://doi.org/10.1021/ac701716q

    CAS  Article  PubMed  Google Scholar 

  41. Mäckel R (1973) Dambos: a study in morphodynamic activity on the plateau regions of Zambia. CATENA 1:327–365. https://doi.org/10.1016/S0341-8162(73)80018-9

    Article  Google Scholar 

  42. Mactaggart B, Bauer J, Goldney D (2007) When History May Lead us Astray: using historical documents to reconstruct swampy meadows/chains of ponds in the New South Wales Central Tablelands, Australia. Aust Geogr 38:233–252. https://doi.org/10.1080/00049180701392782

    Article  Google Scholar 

  43. Mactaggart B, Bauer J, Goldney D, Rawson A (2008) Problems in naming and defining the swampy meadow—An Australian perspective. J Environ Manage 87:461–473. https://doi.org/10.1016/j.jenvman.2007.01.030

    Article  PubMed  Google Scholar 

  44. Mould S, Fryirs K (2017) The Holocene evolution and geomorphology of a chain of ponds, southeast Australia: Establishing a physical template for river management. CATENA 149:349–362. https://doi.org/10.1016/j.catena.2016.10.012

    Article  Google Scholar 

  45. Nash CS, Selker JS, Grant GE, Lewis SL, Noël P (2018) A physical framework for evaluating net effects of wet meadow restoration on late-summer streamflow. Ecohydrology 11:e1953. https://doi.org/10.1002/eco.1953

    Article  Google Scholar 

  46. Nelson ST, Dettman D (2001) Improving hydrogen isotope ratio measurements for on-line chromium reduction systems. Rapid Commun Mass Spectrom 15:2301–2306. https://doi.org/10.1002/rcm.508

    CAS  Article  Google Scholar 

  47. Polvi LE, Wohl E (2012) The beaver meadow complex revisited—the role of beavers in post-glacial floodplain development. Earth Surf Process Landforms 37:332–346. https://doi.org/10.1002/esp.2261

    Article  Google Scholar 

  48. Prosser IP (1991) A comparison of past and present episodes of gully erosion at Wangrah Creek, Southern Tablelands, New South Wales. Aust Geogr Stud 29:139–154. https://doi.org/10.1111/j.1467-8470.1991.tb00711.x

    Article  Google Scholar 

  49. Prosser IP, Chappell J, Gillespie R (1994) Holocene valley aggradation and gully erosion in headwater catchments, south-eastern highlands of Australia. Earth Surf Process Landforms 19:465–480. https://doi.org/10.1002/esp.3290190507

    Article  Google Scholar 

  50. Ralph TJ, Hesse PP (2010) Downstream hydrogeomorphic changes along the Macquarie River, southeastern Australia, leading to channel breakdown and floodplain wetlands. Geomorphology 118:48–64. https://doi.org/10.1016/j.geomorph.2009.12.007

    Article  Google Scholar 

  51. Rosenberry DO, Winter TC (1997) Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota. J Hydrol 191:266–289. https://doi.org/10.1016/S0022-1694(96)03050-8

    Article  Google Scholar 

  52. Rustomji P, Pietsch T (2007) Alluvial sedimentation rates from southeastern Australia indicate post-European settlement landscape recovery. Geomorphology 90:73–90. https://doi.org/10.1016/j.geomorph.2007.01.009

    Article  Google Scholar 

  53. Rustomji P, Pietsch TJ, Wilkinson S (2006) Pre and post-European settlement patterns of floodplain deposition in the Lake Burragorang catchment. CSIRO land and water science report 38/06, Canberra

  54. Schmidt A, Schubert M (2007) Using radon-222 for tracing groundwater discharge into an open-pit lignite mining lake: a case study. Isotopes Environ Health Stud 43:387–400. https://doi.org/10.1080/10256010701705419

    CAS  Article  PubMed  Google Scholar 

  55. Schmidt NM, Olsen H, Bildsøe M, Sluydts V, Leirs H (2005) Effects of grazing intensity on small mammal population ecology in wet meadows. Basic Appl Ecol 6:57–66. https://doi.org/10.1016/j.baae.2004.09.009

    Article  Google Scholar 

  56. Seth B, Schneider C, Storck F (2006) Improved reliability of oxygen isotopic analysis of water using the Finnigan GasBench II periphery of a continuous flow isotope ratio mass spectrometer by backflushing of the sampling line. Rapid Commun Mass Spectrom 20:1049–1051. https://doi.org/10.1002/rcm.2406

    CAS  Article  PubMed  Google Scholar 

  57. Shah N, Nachabe M, Ross M (2007) Extinction depth and evapotranspiration from ground water under selected land covers. Ground Water 45:329–338. https://doi.org/10.1111/j.1745-6584.2007.00302.x

    CAS  Article  PubMed  Google Scholar 

  58. Shaw DA, Vanderkamp G, Conly FM, Pietroniro A, Martz L (2012) The fill-spill hydrology of Prairie wetland complexes during drought and deluge. Hydrol Processes 26:3147–3156. https://doi.org/10.1002/hyp.8390

    Article  Google Scholar 

  59. Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67. https://doi.org/10.1007/s10040-001-0170-8

    CAS  Article  Google Scholar 

  60. Taylor MP, Ives CD, Davies PJ, Stokes R (2011) Troubled waters—an examination of the disconnect between river science and law. Environ Sci Technol 45:8178–8179. https://doi.org/10.1021/es202982g

    CAS  Article  PubMed  Google Scholar 

  61. Thomas OD, Pogson DJ (2012) 1:250,000 Geological series, explanatory notes Goulburn sheet SI55-12. Geological Survey of New South Wales, Maitland

    Google Scholar 

  62. Tiner RW (2003) Geographically isolated wetlands of the United States. Wetlands 23:494–516. https://doi.org/10.1672/0277-5212(2003)023[0494:GIWOTU]2.0.CO;2

    Article  Google Scholar 

  63. Tuckfield CG (1986) A study of dells in the new forest, Hampshire, England. Earth Surf Processes Landforms 11:23–40. https://doi.org/10.1002/esp.3290110105

    Article  Google Scholar 

  64. Uys MC, O'Keeffe JH (1997) Simple words and fuzzy zones: early directions for temporary river research in South Africa. Environ Manage 21:517–531. https://doi.org/10.1007/s002679900047

    CAS  Article  PubMed  Google Scholar 

  65. van der Kamp G, Hayashi M, Bedard-Haughn A, Pennock D (2016) Prairie Pothole Wetlands—suggestions for practical and objective definitions and terminology. Wetlands 36:229–235. https://doi.org/10.1007/s13157-016-0809-9

    Article  Google Scholar 

  66. von der Heyden CJ (2004) The hydrology and hydrogeology of dambos: a review. Prog Phys Geog 28:544–564. https://doi.org/10.1191/0309133304pp424oa

    Article  Google Scholar 

  67. Wasson RJ, Mazari RK, Starr B, Clifton G (1998) The recent history of erosion and sedimentation on the Southern Tablelands of southeastern Australia: sediment flux dominated by channel incision. Geomorphology 24:291–308. https://doi.org/10.1016/S0169-555X(98)00019-1

    Article  Google Scholar 

  68. NSW Water (2017) Mulwaree River water level and discharge, The Towers gauging station. NSW Water, Paramatta

  69. Wegener P, Covino T, Wohl E (2017) Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism. Water Resour Res 53:4606–4623. https://doi.org/10.1002/2016WR019790

    CAS  Article  Google Scholar 

  70. Williams RT, Fryirs KA (2020) The morphology and geomorphic evolution of a large chain-of-ponds river system. Earth Surf Process Landforms. https://doi.org/10.1002/esp.4842

    Article  Google Scholar 

  71. Winter TC, LaBaugh JW (2003) Hydrologic considerations in defining isolated wetlands. Wetlands 23:532. https://doi.org/10.1672/0277-5212(2003)023[0532:HCIDIW]2.0.CO;2

    Article  Google Scholar 

  72. Winter TC, Rosenberry DO (1995) The interaction of ground water with prairie pothole wetlands in the Cottonwood Lake area, east-central North Dakota, 1979–1990. Wetlands 15:193–211. https://doi.org/10.1007/BF03160700

    Article  Google Scholar 

  73. Wood EF, Sivapalan M, Beven K (1990) Similarity and scale in catchment storm response. Rev Geophys 28:1–18. https://doi.org/10.1029/RG028i001p00001

    Article  Google Scholar 

  74. Young ARM (1986a) The geomorphic development of dells (upland swamps) on the Woronora Plateau, N.S.W. Australia Z Geomorphol 30:317–327

    Google Scholar 

  75. Young ARM (1986b) Quaternary sedimentation on the Woronora Plateau and its implications for climatic change. Aust Geogr 17:1–5. https://doi.org/10.1080/00049188608702893

    Article  Google Scholar 

  76. Zavadil E, Ivezich M (2011) Perry River geomorphic study and stability assessment. Report P110068_R01 by Alluvium for the West Gippsland Catchment Management Authority, Victoria.

  77. Zierholz C, Prosser IP, Fogarty PJ, Rustomji P (2001) In-stream wetlands and their significance for channel filling and the catchment sediment budget, Jugiong Creek, New South Wales. Geomorphology 38:221–235. https://doi.org/10.1016/S0169-555X(00)00092-1

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by an Australian Research Council Linkage grant (LP130100120) to KF and GH. The industry partner is NSW Local Land Services. RW held an Australian Postgraduate Award (APA) and an AINSE Postgraduate Award (9201401114), and received Higher Degree Research support from Macquarie University. Thank you to Cath Hughes, Suzanne Hollins, Barbora Gallagher and Robert Chisari from Australian Nuclear Science and Technology Organisation (ANSTO) for their support with stable isotope and Radon analysis. We would also like to thank Randolph Griffiths and Amanda Carter for access to their property ‘Kelburn’ and Peyton Lisenby, Kirsten Cowley, Adam Wilkins, Elizabeth Lisenby, Simon Mould, Luke Stone and Tim Ralph for assistance with fieldwork. We thank two anonymous reviewers and the Editor in Chief for their review comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kirstie A. Fryirs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 31 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Williams, R.T., Fryirs, K.A. & Hose, G.C. The hydrological function of a large chain-of-ponds: a wetland system with intermittent surface flows. Aquat Sci 82, 61 (2020). https://doi.org/10.1007/s00027-020-00735-x

Download citation

Keywords

  • Mulwaree
  • Discontinuous watercourse
  • Temporary wetland
  • Groundwater
  • Hydrological function
  • Geographically isolated wetland