Aquatic Sciences

, Volume 79, Issue 2, pp 345–356 | Cite as

Environmental factors structuring benthic primary producers at different spatial scales in the St. Lawrence River (Canada)

  • David Lévesque
  • Christiane Hudon
  • Patrick M. A. James
  • Pierre Legendre
Research Article

Abstract

The influence of environmental factors controlling the biomass of submerged aquatic macrophytes, cyanobacterial mats, and epiphyton was examined at three nested spatial scales within the St. Lawrence River: (1) along a 250-km-long upstream–downstream river stretch, (2) among three fluvial lakes located within that river stretch and (3) within each fluvial lake at sites located upstream, at the mouth, and downstream of the St. Lawrence River tributaries. Over its 250-km-long course, large increases of water colour (fivefold), suspended matter (tenfold), dissolved organic carbon (DOC) (twofold) and dissolved N and P concentrations (2.5-fold) were observed in the St. Lawrence River, showing the cumulative effects of human activities on water quality. In contrast, biomass of submerged vascular macrophytes dropped tenfold along the sampled reach whereas biomass of epiphytes and cyanobacterial mats rose significantly. Biomass of the three benthic primary producers (PP) was explained (59 %) by the combined effects of conductivity, TP and spatial structure. Macrophyte biomass was related to changes in conductivity (+), biomass of epiphyton responded to DIN:TDP ratio (+) and light extinction coefficient (+) and cyanobacterial mats coincided with differences in DOC (+) and NH4 + (−). Within-lake structure was the most important spatial component for all benthic PP, suggesting that local effects, such as enrichment by the inflow of tributaries, rather than upstream–downstream gradients, determined the biomass of benthic PP. Our study shows that the sum of local tributary inflows exerts major overall pressures on benthic PP in the St. Lawrence River and that conversely, small-scale management of individual watersheds, can markedly improve local ecological condition of the river ecosystems.

Keywords

Submerged aquatic macrophytes Cyanobacterial mats Epiphyton Fluvial ecology Spatial structure St. Lawrence River 

Notes

Acknowledgments

Funding was provided by the St. Lawrence Action Plan and Environment and Climate Change Canada (C.H.). The authors thank Antonella Cattaneo, Bernadette Pinel-Alloul, Roxanne Maranger, Jan R. Stevenson and two anonymous reviewers for their insightful comments on the manuscript. We also thank Jean-Pierre Amyot and Lisa Gualtieri for help with field data collection and the laboratory staff of the St. Lawrence Centre (LEEQ-ECCC) for water quality analyses. François Boudreault (ECCC) assembled and drafted the location map.

References

  1. Alahuhta J, Heino J (2013) Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. J Biogeogr 40:1572–1582. doi: 10.1111/jbi.12089 CrossRefGoogle Scholar
  2. Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284. doi: 10.1146/annurev.ecolsys.35.120202.110122 CrossRefGoogle Scholar
  3. American Public Health Association. (1995) Standard methods for the examination of water and wastewater, 19th edition edn. American Public Health Association, Washington, D.CGoogle Scholar
  4. Barko JW, Smart RM (1986) Sediment-related mechanisms of growth limitation in submerged macrophytes. Ecology 67(1328):1340. doi: 10.2307/1938689 Google Scholar
  5. Barko JW, Hardin DG, Matthews MS (1982) Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Can J Bot 60:877–887. doi: 10.1139/b82-113 CrossRefGoogle Scholar
  6. Bibeault JF, Hudon C (2007) Water availability: an overview of issues and future challenges for the St. Lawrence River. Quebec Stud 42:75–90CrossRefGoogle Scholar
  7. Biggs BJF (1995) The contribution of flood disturbance, catchment geology and land-use to the habitat template of periphyton in stream ecosystems. Freshw Biol 33:419–438. doi: 10.1111/j.1365-2427.1995.tb00404.x CrossRefGoogle Scholar
  8. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68. doi: 10.1016/s0304-3800(01)00501-4 CrossRefGoogle Scholar
  9. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73(1045):1055. doi: 10.2307/1940179 Google Scholar
  10. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832. doi: 10.1890/03-3111 CrossRefGoogle Scholar
  11. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Use R! series. Springer Science, New York. doi: 10.1007/978-1-4419-7976-6 CrossRefGoogle Scholar
  12. Capers RS, Selsky R, Bugbee GJ (2010) The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshw Biol 55:952–966. doi: 10.1111/j.1365-2427.2009.02328.x CrossRefGoogle Scholar
  13. Carignan R, Kalff J (1980) Phosphorus sources for aquatic weeds: water or sediments. Science 207:987–989. doi: 10.1126/science.207.4434.987 CrossRefPubMedGoogle Scholar
  14. Carignan R, Lorrain S (2000) Sediment dynamics in the fluvial lakes of the St. Lawrence River: accumulation rates and characterization of the mixed sediment layer. Can J Fish Aquat Sci 57:63–77. doi: 10.1139/cjfas-57-S1-63 CrossRefGoogle Scholar
  15. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182. doi: 10.1111/j.1461-0248.2005.00820.x CrossRefPubMedGoogle Scholar
  16. Cushing CE, Cummins KW, Minshall GW (2006) River and stream ecosystems of the world. University of California Press, Berkeley, CaliforniaGoogle Scholar
  17. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493. doi: 10.1016/j.ecolmodel.2006.02.015 CrossRefGoogle Scholar
  18. Duarte CM, Kalff J (1986) Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnol Oceanogr 31(1072):1080Google Scholar
  19. Environment Canada. 2005. Manuel des methodes d’analyses (annexe B). Environment Canada, Quebec Region, Scientific and Technical Services Section, St. Lawrence Centre, Montreal, CanadaGoogle Scholar
  20. Environment Canada (2012) Water survey Canada: hydat database. Environment Canada, OttawaGoogle Scholar
  21. Forman RTT, Godron M (1986) Landscape ecology. Wiley, New YorkGoogle Scholar
  22. Franklin P, Dunbar M, Whitehead P (2008) Flow controls on lowland river macrophytes: a review. Sci Total Environ 400(369):378. doi: 10.1016/j.scitotenv.2008.06.018 Google Scholar
  23. Gallego I, Davidson TA, Jeppesen E, Perez-Martinez C, Fuentes-Rodriguez F, Juan M, Casas JJ (2014) Disturbance from pond management obscures local and regional drivers of assemblages of primary producers. Freshw Biol 59:1406–1422. doi: 10.1111/fwb.12354 CrossRefGoogle Scholar
  24. Giraudoux P (2011) Data analysis in ecology R package version 1.5.2. http://cran.r-project.org/web/packages/pgirmess/index.html. Accessed 30 Apr 2014
  25. Gouvernement du Québec (2010) Répertoire des municipalités. Ministère des Affaires municipales et de l’Occupation du territoire, Gouvernement du Québec. http://www.mamrot.gouv.qc.ca/repertoire-des-municipalites/. Accessed 29 Sept 2015
  26. Hilton J, O’Hare M, Bowes MJ, Jones JI (2006) How green is my river? A new paradigm of eutrophication in rivers. Sci Total Environ 365:66–83. doi: 10.1016/j.scitotenv.2006.02.055 CrossRefPubMedGoogle Scholar
  27. Hudon C (1997) Impact of water level fluctuations on St. Lawrence River aquatic vegetation. Can J Fish Aquat Sci 54:2853–2865. doi: 10.1139/cjfas-54-12-2853 CrossRefGoogle Scholar
  28. Hudon C, Carignan R (2008) Cumulative impacts of hydrology and human activities on water quality in the St. Lawrence River (Lake Saint-Pierre, Quebec, Canada). Can J Fish Aquat Sci 65(1165):1180. doi: 10.1139/f08-069 Google Scholar
  29. Hudon C, Lalonde S, Gagnon P (2000) Ranking the effects of site exposure, plant growth form, water depth, and transparency on aquatic plant biomass. Can J Fish Aquat Sci 57:31–42. doi: 10.1139/cjfas-57-S1-31 CrossRefGoogle Scholar
  30. Hudon C et al (2012) Oligotrophication from wetland epuration alters the riverine trophic network and carrying capacity for fish. Aquat Sci 74(495):511. doi: 10.1007/s00027-011-0243-2 Google Scholar
  31. Husson F, Josse J, Le S, Mazet J (2010) Multivariate exploratory data analysis and data mining with R. R package version 1.14. http://cran.r-project.org/web/packages/FactoMineR/index.html. Accessed 12 Mar 2013
  32. Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (1998) The structuring role of submerged macrophytes in lakes. Springer, New YorkCrossRefGoogle Scholar
  33. Jones JI, Young JO, Eaton JW, Moss B (2002) The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. J Ecol 90:12–24. doi: 10.1046/j.0022-0477.2001.00620.x CrossRefGoogle Scholar
  34. Junk JW, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127Google Scholar
  35. Kenow KP, Lyon JE, Hines RK, Elfessi A (2007) Estimating biomass of submersed vegetation using a simple rake sampling technique. Hydrobiologia 575(447):454. doi: 10.1007/s10750-006-0284-z Google Scholar
  36. Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14:89–136. doi: 10.1139/a06-001 CrossRefGoogle Scholar
  37. Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi: 10.1007/s004420100716 CrossRefGoogle Scholar
  38. Legendre P, Legendre L (2012) Numerical ecology, 3rd english edn edn. Elsevier Science BV, Amsterdam, the NetherlandsGoogle Scholar
  39. Levesque D, Cattaneo A, Hudon C, Gagnon P (2012) Predicting the risk of proliferation of the benthic cyanobacterium Lyngbya wollei in the St. Lawrence River. Can J Fish Aquat Sci 69(1585):1595. doi: 10.1139/f2012-087 Google Scholar
  40. Levesque D, Hudon C, Amyot JP, Cattaneo A (2015) Wave exposure and current regulate biomass accumulation of the benthic cyanobacterium Lyngbya wollei in a large fluvial lake. Freshw Sci 34:867–880CrossRefGoogle Scholar
  41. Makarewicz JC, D’Aiuto PE, Bosch I (2007) Elevated nutrient levels from agriculturally dominated watersheds stimulate metaphyton growth. J Gt Lakes Res 33:437–448. doi:10.3394/0380-1330(2007)33[437:enlfad]2.0.co;2Google Scholar
  42. Mikulyuk A, Sharma S, Van Egeren S, Erdmann E, Nault ME, Hauxwell J (2011) The relative role of environmental, spatial, and land-use patterns in explaining aquatic macrophyte community composition. Can J Fish Aquat Sci 68:1778–1789. doi: 10.1139/f2011-095 CrossRefGoogle Scholar
  43. Morrice JA, Kelly JR, Trebitz AS, Cotter AM, Knuth ML (2004) Temporal dynamics of nutrients (N and P) and hydrology in a Lake Superior coastal wetland. J Gt Lakes Res 30 Suppl 1:82–96. doi: 10.1016/S0380-1330(04)70379-2 CrossRefGoogle Scholar
  44. O’Hare MT, Gunn IDM, Chapman DS, Dudley BJ, Purse BV (2012) Impacts of space, local environment and habitat connectivity on macrophyte communities in conservation lakes. Divers Distrib 18:603–614. doi: 10.1111/j.1472-4642.2011.00860.x CrossRefGoogle Scholar
  45. Oksanen J et al (2013) vegan: Community Ecology Package. R package version 2.0-10. http://cran.r-project.org/package=vegan. Accessed 30 Apr 2014
  46. Sand Jensen K (1989) Environmental variables and their effect on photosynthesis of aquatic plant-communities. Aquat Bot 34:5–25. doi: 10.1016/0304-3770(89)90048-x CrossRefGoogle Scholar
  47. Stainton MP, Capel MJ, Armstrong FAJ (1977) The chemical analysis of fresh water. Canada Fisheries and Marine Service, WinnipegGoogle Scholar
  48. Stevenson RJ, Bothwell ML, Lowe RL (1996) Algal ecology: freshwater benthic ecosystem. Elsevier, San DiegoGoogle Scholar
  49. Thorp JH, Thoms MC, Delong MD (2006) The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res Appl 22:123–147. doi: 10.1002/rra.901 CrossRefGoogle Scholar
  50. Vadeboncoeur Y, Steinman AD (2002) Periphyton function in lake ecosystems. Sci World J 2:1449–1468. doi: 10.1100/tsw.2002.294 CrossRefGoogle Scholar
  51. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) River continuum concept. Can J Fish Aquat Sci 37:130–137. doi: 10.1139/f80-017 CrossRefGoogle Scholar
  52. Vis C, Hudon C, Carignan R (2006) Influence of the vertical structure of macrophyte stands on epiphyte community metabolism. Can J Fish Aquat Sci 63:1014–1026. doi: 10.1139/f06-021 CrossRefGoogle Scholar
  53. Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, New YorkGoogle Scholar
  54. Yin Y, Winkelman JS, Langrehr HA (2000) Long term resource monitoring program procedures: aquatic vegetation monitoring. US Geological Survey, Upper Midwest Environmental Sciences Center, La CrosseGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • David Lévesque
    • 1
    • 3
  • Christiane Hudon
    • 2
    • 3
  • Patrick M. A. James
    • 1
  • Pierre Legendre
    • 1
    • 3
  1. 1.Département des Sciences BiologiquesUniversité de MontréalMontrealCanada
  2. 2.Water Science and Technology DirectorateEnvironment and Climate Change CanadaMontrealCanada
  3. 3.Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL)Trois-RivièresCanada

Personalised recommendations