Advertisement

Aquatic Sciences

, Volume 79, Issue 2, pp 335–344 | Cite as

In situ accumulation of tetrodotoxin in non-toxic Pleurobranchaea maculata (Opisthobranchia)

  • Lauren Salvitti
  • Susanna A. Wood
  • Rex Fairweather
  • David Culliford
  • Paul McNabb
  • S. Craig Cary
Research Article

Abstract

Tetrodotoxin (TTX) is a highly potent neurotoxin targeting voltage gated sodium channels. It is found in numerous phyla, including both marine and terrestrial taxa, however, its origin is a topic of considerable debate. The aim of this study was to investigate the origin of TTX in the Opisthobranch Pleurobranchaea maculata using in situ experimentation. Sixteen individuals sourced from non-toxic populations were transplanted to a habitat with toxic populations. These were kept in mesh net cages either; (1) anchored to the seafloor, or (2) deployed 0.5 m off the benthos. They were fed a non-toxic diet for 8 weeks before being sacrificed, and either the entire organisms or specific organs analysed for TTX via liquid chromatography–mass spectrometry. Four of the six remaining individuals from cages on the benthos contained TTX (max. 0.79 mg kg−1), whilst only two of eight from the suspended cages contained TTX and concentrations were lower (max. 0.43 mg kg−1). These were similar to the lowest concentrations (min. 0.4 mg kg−1) detected in free-living specimens collected during the experimental period. Among positive individuals the highest concentrations were detected in gonad tissues. These data, in concert with previous studies, suggest an environmental source of TTX for P. maculata, which may be bacterial or dietary in origin. High-Throughput Sequencing (18S ribosomal RNA gene metabarcoding) of foregut contents from toxic and non-toxic individuals was used to investigate their diet. High abundances of Cnidaria and Annelida sequences were identified and these groups should be targeted in future efforts to identify TTX-containing organisms.

Keywords

Tetrodotoxin High-Throughput Sequencing Cnidaria Annelida 

Notes

Acknowledgments

This research was funded through a grant from the Marsden Fund of the Royal Society of New Zealand (UOW1002) to SCC, SAW and PM. We are grateful to David Taylor (Cawthron) for collection of specimens and Kati Doehring and Weimin Jiang (Cawthron) for preparation of Figs. 1 and 2. New Zealand Genomic Limited for assistance with bioinformatics and Dudley Bell and Warrick Powrie (Waikato University) for technical and field assistance.

References

  1. Brodie ED Jr, Ridenhour BJ, Brodie ED III (2002) The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56:2067–2082CrossRefPubMedGoogle Scholar
  2. Brodie ED III, Feldman CR, Hanifin CT, Motychak JE, Mulcahy DG, Williams BL, Brodie ED Jr (2005) Parallel arms races between garter snakes and newts involving tetrodotoxin as the phenotypic interface of coevolution. J Chem Ecol 31:343–356CrossRefPubMedGoogle Scholar
  3. Cardall BL, Brodie ED, Hanifin CT (2004) Secretion and regeneration of tetrodotoxin in the rough-skin newt (Taricha granulosa). Toxicon 44:933–938CrossRefPubMedGoogle Scholar
  4. Chau R, Kalaitzis JA, Neilan BA (2011) On the origins and biosynthesis of tetrodotoxin. Aquat Toxicol 104:61–72CrossRefPubMedGoogle Scholar
  5. Cheng CA, Hwang DF, Tsai YH, Chen HC, Jeng SS, Noguchi T, Ohwada K, Hashimoto K (1995) Microflora and tetrodotoxin-producing bacteria in a gastropod, Niotha clathrata. Food Chem Toxicol 33:929–934CrossRefPubMedGoogle Scholar
  6. Do HK, Kogure K, Simidu U (1990) Identification of deep-sea-sediment bacteria which produce tetrodotoxin. Appl Environ Microbiol 56:1162–1163PubMedPubMedCentralGoogle Scholar
  7. Do HK, Kogure K, Imada C, Noguchi T, Ohwada K, Simidu U (1991) Tetrodotoxin production of actinomycetes isolated from marine sediment. J Appl Microbiol 70:464–468Google Scholar
  8. Do HK, Hamasaki K, Ohwada K, Simidu U, Noguchi T, Shida Y, Kogure K (1993) Presence of tetrodotoxin and tetrodotoxin-producing bacteria in fresh-water sediments. Appl Environ Microbiol 59:3934–3937PubMedPubMedCentralGoogle Scholar
  9. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  10. Feldman CR, Brodie EDJ, Brodie EDr, Pfrender ME (2012) Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes. Proc Natl Acad Sci USA 109:4556–4561CrossRefPubMedPubMedCentralGoogle Scholar
  11. Frazão B, Vasconcelos V, Antunes A (2012) Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Marine Drugs 10:1812–1851CrossRefPubMedPubMedCentralGoogle Scholar
  12. Geffeney SL, Fujimoto E, Brodie ED, Ruben PC (2005) Evolutionary diversification of TTX-resistant sodium channels in a predator-prey interaction. Nature 434:759–763CrossRefPubMedGoogle Scholar
  13. Greene RR, Feldman CR (2009) Thamnophis atratus atratus diet. Herpetol Rev 40:103–104Google Scholar
  14. Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, De Vargas C, Decelle J (2013) The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:D597–D604CrossRefPubMedGoogle Scholar
  15. Halstead BW (2002) The microbial biogenesis of aquatic biotoxins. Toxicol Mech Methods 12:135–153CrossRefPubMedGoogle Scholar
  16. Hanifin CT, Brodie ED III, Brodie ED Jr (2002) Tetrodotoxin levels of the rough-skin newt, Taricha granulosa, increase in long-term captivity. Toxicon 40:1149–1153CrossRefPubMedGoogle Scholar
  17. Honda S, Arakawa O, Takatani T, Tachibana K, Yagi M, Tanigawa A, Noguchi T (2005) Toxification of cultured puffer fish Takifugu rubripes by feeding on tetrodotoxin-containing diet. Nippon Suisan Gakkaishi 71:815–820CrossRefGoogle Scholar
  18. Hwang D-F, Noguchi T (2007) Tetrodotoxin poisoning. Adv Food Nutr Res 52:141–236CrossRefPubMedGoogle Scholar
  19. Ikeda K, Emoto Y, Tatsuno R, Wang JJ, Ngy L, Taniyama S, Takatani T, Arakawa O (2010) Maturation-associated changes in toxicity of the pufferfish Takifugu poecilonotus. Toxicon 55:289–297CrossRefPubMedGoogle Scholar
  20. Khor S, Wood SA, Salvitti L, Taylor DI, Adamson J, McNabb P, Cary SC (2013) Investigating diet as the source of tetrodotoxin in Pleurobranchaea maculata. Marine Drugs 12:1–12CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lee M-J, Jeong D-Y, Kim W-S, Kim H-D, Kim C-H, Park W-W, Park Y-H, Kim K-S, Kim H-M, Kim D-S (2000) A tetrodotoxin-producing Vibrio strain, LM-1, from the puffer fish Fugu vermicularis radiatus. Appl Environ Microbiol 66:1698–1701CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lee JH, Kondo H, Sato S, Akimoto S, Saito T, Kodama M, Watabe S (2007) Identification of novel genes related to tetrodotoxin intoxication in pufferfish. Toxicon 49:939–953CrossRefPubMedGoogle Scholar
  23. Lehman EM, Brodie ED Jr, Brodie ED III (2004) No evidence for an endosymbiotic bacterial origin of tetrodotoxin in the newt Taricha granulosa. Toxicon 44:243–249CrossRefPubMedGoogle Scholar
  24. Maruta S, Yamaoka K, Yotsu-Yamashita M (2008) Two critical residues in p-loop regions of puffer fish Na+ channels on TTX sensitivity. Toxicon 51:381–387CrossRefPubMedGoogle Scholar
  25. Matsui T, Hamada S, Konosu S (1981) Difference in accumulation of puffer fish toxin and crystalline tetrodotoxin in the puffer fish, Fugu rubripes-rubripes. Bull Jpn Soc Sci Fish 47:535–537CrossRefGoogle Scholar
  26. Matsui T, Taketsugu S, Kodama K, Ishii A, Yamamori K, Shimizu C (1989) Studies on the toxification of puffer fish.1. Production of tetrodotoxin by the intestinal bacteria of a puffer fish Takifugu-niphobles. Nippon Suisan Gakkaishi 55:2199–2203CrossRefGoogle Scholar
  27. McNabb P, Selwood AI, Munday R, Wood SA, Taylor DI, MacKenzie LA, van Ginkel R, Rhodes LL, Cornelisen C, Heasman K, Holland PT, King C (2010) Detection of tetrodotoxin from the grey side-gilled sea slug—Pleurobranchaea maculata, and associated dog neurotoxicosis on beaches adjacent to the Hauraki Gulf, Auckland, New Zealand. Toxicon 56:466–473CrossRefPubMedGoogle Scholar
  28. McNabb PS, Taylor DI, Ogilvie SC, Wilkinson L, Anderson A, Hamon D, Wood SA, Peake BM (2014) First detection of tetrodotoxin in the bivalve Paphies australis by liquid chromatography coupled to triple quadrupole mass spectrometry with and without precolumn reaction. J AOAC Int 97:325–333CrossRefPubMedGoogle Scholar
  29. Meunier FA, Feng Z, Molgó J, Zamponi GW, Schiavo G (2002) Glycerotoxin from Glycera convoluta stimulates neurosecretion by up-regulating N-type Ca2+ channel activity. The EMBO Journal 21:6733–6743CrossRefPubMedPubMedCentralGoogle Scholar
  30. Miyazawa K, Noguchi T (2001) Distribution and origin of tetrodotoxin. Toxin Reviews 20:11–33Google Scholar
  31. Moran Y, Genikhovich G, Gordon D, Wienkoop S, Zenkert C, Özbek S, Technau U, Gurevitz M (2012) Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones. Proc R Soc B 279:1351–1358CrossRefPubMedGoogle Scholar
  32. Noguchi T, Arakawa O (2008) Tetrodotoxin—distribution and accumulation in aquatic organisms, and cases of human intoxication. Marine Drugs 6:220–242CrossRefPubMedPubMedCentralGoogle Scholar
  33. Noguchi T, Maruyama J, Hashimoto K, Narita H (1982) Tetrodotoxin in the starfish Astropecten polyacanthus, in association with toxification of a trumpet shell, “Boshubora” Charonia sauliae. Bull Jpn Soc Sci Fish 48:1173–1177CrossRefGoogle Scholar
  34. Noguchi T, Arakawa O, Takatani T (2006) Toxicity of pufferfish Takifugu rubripes cultured in netcages at sea or aquaria on land. Comp Biochem Phys D 1:153–157Google Scholar
  35. Ottaway JR (1977) Pleurobranchaea novaezelandiae preying on Actinia tenebrosa. New Zeal J Mar Fresh 1:125–130CrossRefGoogle Scholar
  36. Pochon X, Bott NJ, Smith KF, Wood SA (2013) Evaluating detection limits of next-generation sequencing for the surveillance and monitoring of international marine pests. PLoS One 8:e73935CrossRefPubMedPubMedCentralGoogle Scholar
  37. Salvitti L, Wood SA, Taylor DI, McNabb P, Cary SC (2015a) First identification of tetrodotoxin (TTX) in the flatworm Stylochoplana sp.; a source of TTX for the sea slug Pleurobranchaea maculata. Toxicon 95:23–29CrossRefPubMedGoogle Scholar
  38. Salvitti L, Wood SA, Windsor L, Cary SC (2015b) Intracellular immunoenzymatic detection of tetrodotoxin (TTX) in Pleurobranchaea maculata (Gastropoda) and Stylochoplana sp. (Turbellaria). Marine Drugs  13:756–769CrossRefPubMedPubMedCentralGoogle Scholar
  39. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  40. Turk T, Kem WR (2009) The phylum Cnidaria and investigations of its toxins and venoms until 1990. Toxicon 54:1031–1037CrossRefPubMedGoogle Scholar
  41. Venkatesh B, Lu SQ, Dandona N, See SL, Brenner S, Soong TW (2005) Genetic basis of tetrodotoxin resistance in puffer fishes. Curr Biol 15:2069–2072CrossRefPubMedGoogle Scholar
  42. Wang J, Fan YH (2010) Isolation and characterization of a Bacillus species capable of producing tetrodotoxin from the puffer fish Fugu obscurus. World J Microb Biot 26:1755–1760CrossRefGoogle Scholar
  43. Wanke E, Zaharenko AJ, Redaelli E, Schiavon E (2009) Actions of sea anemone type 1 neurotoxins on voltage-gated sodium channel isoforms. Toxicon 54:1102–1111CrossRefPubMedGoogle Scholar
  44. Willan RC (1983) New Zealand side-gilled sea slugs (Opisthobranchia: Notaspidea: Pluerobranchidae). Malacologia 23:221–270Google Scholar
  45. Williams BL, Brodie ED (2004) A resistant predator and its toxic prey: persistence of newt toxin leads to poisonous (not venomous) snakes. J Chem Ecol 30:1901–1919CrossRefPubMedGoogle Scholar
  46. Wiseman KD, Pool AC (2007) Thamnophis couchii (Sierra garter snake): predator-prey interaction. Herpetol Rev 38:344Google Scholar
  47. Wood SA, Casas M, Taylor D, McNabb P, Salvitti L, Ogilvie S, Cary SC (2012a) Depuration of tetrodotoxin and changes in bacterial communities in Pleurobranchea maculata adults and egg masses maintained in captivity. J Chem Ecol 38:1342–1350CrossRefPubMedGoogle Scholar
  48. Wood SA, Taylor DI, McNabb P, Walker J, Adamson J, Cary SC (2012b) Tetrodotoxin concentrations in Pleurobranchaea maculata: temporal, spatial and individual variability from New Zealand populations. Marine Drugs 10:163–176CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wu ZL, Yang Y, Xie LP, Xia GL, Hu JC, Wang SJ, Zhang RQ (2005) Toxicity and distribution of tetrodotoxin-producing bacteria in puffer fish Fugu rubripes collected from the Bohai Sea of China. Toxicon 46:471–476CrossRefPubMedGoogle Scholar
  50. Yasumoto T, Yasumura D, Yotsu M, Michishita T, Endo A, Kotaki Y (1986a) Bacterial production of tetrodotoxin and anhydrotetrodotoxin. Agr Biol Chem Tokyo 50:793–795Google Scholar
  51. Yasumoto T, Nagai H, Yasumura D, Michishita T, Endo A, Yotsu M, Kotaki Y (1986b) Interspecies distribution and possible origin of tetrodotoxin. Ann N Y Acad Sci 479:44–51CrossRefPubMedGoogle Scholar
  52. Yotsu-Yamashita M, Nishimori K, Nitanai Y, Isemura M, Sugimoto A, Yasumoto T (2000) Binding properties of 3H-PbTx-3 and 3H-saxitoxin to brain membranes and to skeletal muscle membranes of puffer fish Fugu pardalis and the primary structure of a voltage-gated Na+ channel α-subunit (fMNa1) from skeletal muscle of F. pardalis. Biochem Biophys Res Commun 267:403–412CrossRefPubMedGoogle Scholar
  53. Yu CF, Yu PHF, Chan PL, Yan Q, Wong PK (2004) Two novel species of tetrodotoxin-producing bacteria isolated from toxic marine puffer fishes. Toxicon 44:641–647CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Environmental Research InstituteUniversity of WaikatoHamiltonNew Zealand
  2. 2.Cawthron InstituteNelsonNew Zealand

Personalised recommendations