Aquatic Sciences

, Volume 79, Issue 2, pp 231–248 | Cite as

CDOM and the underwater light climate in two shallow North Patagonian lakes: evaluating the effects on nano and microphytoplankton community structure

  • Marina Gerea
  • Gonzalo L. Pérez
  • Fernando Unrein
  • Carolina Soto Cárdenas
  • Donald Morris
  • Claudia Queimaliños
Research Article


We performed an annual synchronous sampling in two oligotrophic shallow lakes to assess the influence of chromophoric dissolved organic matter (CDOM) on the underwater light climate, and its potential effects on the nano and microphytoplankton community structure. Lake Escondido showed higher CDOM concentration and light attenuation with a spectral composition of underwater light shifted towards green–yellow light, while Lake Morenito presented clearer waters and a dominance of green light. Temporal dynamics of CDOM absorption at 440 nm were consistently explained by differences in cumulative precipitation. Mixotrophic cryptophytes and chrysophytes dominated the phytoplankton of both lakes, although the prevalence of each algal group was different between lakes. The dominance of these groups was largely explained by differences in spectral composition of underwater light, estimated as the ratio between Kd(RED) and Kd(GREEN) [Kd(R)/Kd(G) ratio]. Cryptophytes prevailed in Lake Morenito and their biomass showed a positive strong relationship with Kd(R)/Kd(G) ratio. Chrysophyte biomass was comparatively more important in Lake Escondido showing an opposite relationship with the Kd(R)/Kd(G) ratio. These results underscore that higher relative green light availability allowed the dominance of cryptophytes, while changes in light spectral composition driven by CDOM allowed coexistence. We suggest that nano and microphytoplankton community structure in these lakes could be driven by changes in spectral composition of underwater light shaped by differences in CDOM, ultimately determined by precipitation/hydrological patterns.


Spectral composition of underwater light Light climate Nanophytoplankton Microphytoplankton Community structure 



We are very grateful to Dr. Stefan Simis, Dr. Jean-François Lapierre and one anonymous reviewer, whose valuable contributions were essential to improve the manuscript. We especially thank Miguel, Nicolás and Leandro Battini, Dr. Cristian D. Torres, and Nelson Del Moral for their help during the sampling. This work was supported by the Consejo Superior de Investigaciones Científicas-Consejo Nacional de Investigaciones Científicas y Técnicas (CSIC-CONICET) (Spain-Argentina) Project PROBA (2007 AR0018, CSIC) and the Argentinean projects CONICET-PIP 01301, FONCYT-PICT 2007-00393 and PICT 2012-1200, and UNComahue 04/B166 and 04/B194. Marina Gerea and Carolina Soto Cárdenas were supported by CONICET fellowships. Gonzalo L. Pérez, Fernando Unrein and Claudia Queimaliños are CONICET researchers (Argentina). Donald Morris is a researcher and faculty member at Lehigh University (United States).

Supplementary material

27_2016_493_MOESM1_ESM.pdf (240 kb)
Online Resources (PDF 240 kb)


  1. AIC (2011) Informe Hidrometeorológico 2010–2011. Autoridad Interjurisdiccional de Cuencas, Río NegroGoogle Scholar
  2. Alonso C, Rocco V, Barriga JP, Battini MA, Zagarese H (2004) Surface avoidance by freshwater zooplankton: field evidence on the role of ultraviolet radiation. Limnol Oceanogr 49:225–232CrossRefGoogle Scholar
  3. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, WashingtonGoogle Scholar
  4. Asmala E, Stedmon CA, Thomas DN (2012) Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries. Estuar Coast Shelf Sci 111:107–117CrossRefGoogle Scholar
  5. Bachmann RW, Canfield DE (1996) Use of an alternative method for monitoring total nitrogen concentration in Florida lakes. Hydrobiologia 323:1–8CrossRefGoogle Scholar
  6. Balseiro EG, Modenutti B (1990) Zooplankton dynamics of Lake Escondido (Río Negro, Argentina), with special reference to a population of Boeckella gracilipes (Copepoda, Calanoida). Int Rev Hydrobiol 75:475–491CrossRefGoogle Scholar
  7. Bastidas Navarro M, Modenutti B, Callieri C, Bertoni R, Balseiro E (2009) Balance between primary and bacterial production in North Patagonian shallow lakes. Aquat Ecol 43:867–878CrossRefGoogle Scholar
  8. Belzile C, Vincent WF, Kumagai M (2002) Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa. Limnol Oceanogr 47:95–107CrossRefGoogle Scholar
  9. Beutler M, Wiltshire KH, Meyer B et al (2002) A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72:39–53CrossRefPubMedGoogle Scholar
  10. Bidigare R, Marra J, Dickey T, Iturriaga R, Baker K, Smith R, Pak H (1990) Evidence for phytoplankton succession and chromatic adaptation in the Sargasso Sea during spring 1985. Mar Ecol Prog Ser 60:113–122CrossRefGoogle Scholar
  11. Bukaveckas PA, Robbins-Forbes M (2000) Role of dissolved organic carbon in the attenuation of photosynthetically active and ultraviolet radiation in Adirondack lakes. Freshw Biol 43:339–354CrossRefGoogle Scholar
  12. Burns CW, Brett MT, Schallenberg M (2011) A comparison of the trophic transfer of fatty acids in freshwater plankton by cladocerans and calanoid copepods. Freshw Biol 56:889–903CrossRefGoogle Scholar
  13. Callieri C (2007) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw Rev 1:1–28CrossRefGoogle Scholar
  14. Carpenter SR, Cole JJ, Kitchell JF, Pace ML (1998) Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes. Limnol Oceanogr 43:73–80CrossRefGoogle Scholar
  15. Diaz M, Pedrozo F (1993) Seasonal succession of phytoplankton in a small Andean Patagonian lake (Rep. Argentina) and some considerations about the PEG model. Arch Hydrobiol 127:167–184Google Scholar
  16. Diaz M, Pedrozo F, Reynolds C, Temporetti P (2007) Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37:17–27CrossRefGoogle Scholar
  17. Dinshaw R (2012) Spectroscopic investigations of the photophysics of cryptophyte light-harvesting. University of Toronto, CanadaGoogle Scholar
  18. Doust AB, Wilk KE, Curmi PMG, Scholes GD (2006) The photophysics of cryptophyte light-harvesting. J Photochem Photobiol Chem 184:1–17CrossRefGoogle Scholar
  19. Dutton HJ, Juday C (1944) Chromatic adaptation in relation to color and depth distribution of freshwater phytoplankton and large aquatic plants. Ecology 25:273–282CrossRefGoogle Scholar
  20. Engelmann TW (1883) Bacterium photometricum: ein Beitrag zur vergleichenden Physiologie des Licht- und Farbensinnes. Arch Physiol 30:95–124CrossRefGoogle Scholar
  21. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O et al (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360CrossRefPubMedGoogle Scholar
  22. Ferrero E, Eöry M, Ferreyra G et al (2006) Vertical mixing and ecological effects of ultraviolet radiation in planktonic communities. Photochem Photobiol 82:898–902CrossRefPubMedGoogle Scholar
  23. Fichot CG, Kaiser K, Hooker SB, Amon RMW, Babin M, Bélanger S, Walker SA, Benner R (2013) Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci Rep 3:1053CrossRefPubMedPubMedCentralGoogle Scholar
  24. Frenette JJ, Massicotte P, Lapierre JF (2012) Colorful niches of phytoplankton shaped by the spatial connectivity in a large river ecosystem: a riverscape perspective. PLoS One 7:e35891CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gallegos CL (1994) Refining habitat requirements of submersed aquatic vegetation: role of optical models. Estuaries 17:187–199CrossRefGoogle Scholar
  26. Gallegos CL (2001) Calculating optical water quality targets to restore and protect submersed aquatic vegetation: overcoming problems in partitioning the diffuse attenuation coefficient for photosynthetically active radiation. Estuaries 24:381–397CrossRefGoogle Scholar
  27. Gause GF (1934) The struggle for existence. William and Wilkins, BaltimoreCrossRefGoogle Scholar
  28. Glover HE, Keller MD, Spinrad RW (1987) The effects of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones. J Exp Mar Biol Ecol 105:137–159CrossRefGoogle Scholar
  29. Green SA, Blough NV (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr 39:1903–1916CrossRefGoogle Scholar
  30. Guo L, Ping C-L, Macdonald RW (2007) Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophys Res Lett 34:L13603CrossRefGoogle Scholar
  31. Häder DP, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285CrossRefPubMedGoogle Scholar
  32. Harder R (1923) Über die Bedeutung von Lichtintensitt und Wellenlänge für die Assimilation farbiger Algen. Z Bot 15:306–355Google Scholar
  33. Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969CrossRefGoogle Scholar
  34. Hickman AE, Holligan PM, Moore CM, Sharples J, Krivtsov V, Palmer MR (2009) Distribution and chromatic adaptation of phytoplankton within a shelf sea thermocline. Limnol Oceanogr 54:525–536CrossRefGoogle Scholar
  35. Hickman A, Dutkiewicz S, Williams R, Follows M (2010) Modelling the effects of chromatic adaptation on phytoplankton community structure in the oligotrophic ocean. Mar Ecol Prog Ser 406:1–17CrossRefGoogle Scholar
  36. Hill DRA, Rowan KS (1989) The biliproteins of the Cryptophyceae. Phycologia 28:455–463CrossRefGoogle Scholar
  37. Hiriart-Baer V (2013) Dissolved organic matter quantity and quality in Lake Simcoe compared to two other large lakes in southern Ontario. Inland Waters 3:139–152CrossRefGoogle Scholar
  38. Hongve D, Riise G, Kristiansen JF (2004) Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water—a result of increased precipitation? Aquat Sci 66:231–238CrossRefGoogle Scholar
  39. Huang W, Chen RF (2009) Sources and transformations of chromophoric dissolved organic matter in the Neponset River Watershed. J Geophys Res 114:G00F05–G00F19Google Scholar
  40. Jobbágy EG, Paruelo JM, León RJC (1995) Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia, Argentina. Ecología Austral 5:47–53Google Scholar
  41. Jones RI (1992) The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229:73–91CrossRefGoogle Scholar
  42. Jones RI (1994) Mixotrophy in planktonic protist as a spectrum of nutritional strategies. Mar Microb Food Webs 8(1–2):87–96Google Scholar
  43. Karlsson J, Byström P, Ask J et al (2009) Light limitation of nutrient-poor lake ecosystems. Nature 460:506–509CrossRefPubMedGoogle Scholar
  44. Katechakis A, Stibor H (2006) The mixotroph Ochromonas tuberculata may invade and suppress specialist phago- and phototroph plankton communities depending on nutrient conditions. Oecologia 148:692–701CrossRefPubMedGoogle Scholar
  45. Kirk J (1981) Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters. Aust J Mar Freshw Res 32:517–532CrossRefGoogle Scholar
  46. Kirk J (1984) Dependence of relationship between inherent and apparent optical properties of water on solar altitude. Limnol Oceanogr 29:350–356CrossRefGoogle Scholar
  47. Kirk J (1991) Volume scattering function, average cosines, and the underwater light field. Limnol Oceanogr 36:455–467CrossRefGoogle Scholar
  48. Kirk J (1994) Characteristics of the light field in highly turbid waters: a Monte Carlo study. Limnol Oceanogr 39:702–706CrossRefGoogle Scholar
  49. Kirk J (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, New YorkGoogle Scholar
  50. Lawrenz E, Pinckney JL, Ranhofer ML et al (2010) Spectral irradiance and phytoplankton community composition in a Blackwater-dominated estuary, Winyah Bay, South Carolina, USA. Estuar Coast 33:1186–1201CrossRefGoogle Scholar
  51. Leavitt PR, Vinebrooke RD, Donald DB, Smol JP, Schindler DW (1997) Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature 388:457–459CrossRefGoogle Scholar
  52. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579CrossRefGoogle Scholar
  53. Mladenov N, Sommaruga R, Morales-Baquero R et al (2011) Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat Commun 2:405CrossRefPubMedPubMedCentralGoogle Scholar
  54. Modenutti BE, Balseiro EG, Queimalinos CP (2000) Ciliate community structure in two South Andean lakes: the effect of lake water on Ophrydium naumanni distribution. Aquat Microb Ecol 21:299–307CrossRefGoogle Scholar
  55. Morel A, Gentili B (1991) Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution. Appl Opt 30:4427–4438CrossRefPubMedGoogle Scholar
  56. Morris DP, Zagarese H, Williamson CE, Balseiro EG et al (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40:1381–1391CrossRefGoogle Scholar
  57. Nayar S, Chou LM (2003) Relative efficiencies of different filters in retaining phytoplankton for pigment and productivity studies. Estuar Coast Shelf Sci 58:241–248CrossRefGoogle Scholar
  58. Núñez MN, Solman SA, Cabré MF (2009) Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century. Clim Dyn 32:1081–1095CrossRefGoogle Scholar
  59. Nusch EA (1980) Comparison of different methods for chlorophyll and phaeopigment determination. Arch Hydrobiol 14:14–36Google Scholar
  60. Nygaard K, Tobiesen A (1993) Bacterivory in algae: a survival strategy during nutrient limitation. Limnol Oceanogr 38:273–279CrossRefGoogle Scholar
  61. Pace ML, Cole JJ (2002) Synchronous variation of dissolved organic carbon and color in lakes. Limnol Oceanogr 47:333–342CrossRefGoogle Scholar
  62. Palenik B (2001) Chromatic adaptation in marine Synechococcus strains. Appl Environ Microbiol 67:991–994CrossRefPubMedPubMedCentralGoogle Scholar
  63. Paruelo JM, Beltrán A, Jobbágy E et al (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–101Google Scholar
  64. Pérez GL (2006) Light climate and pigment distribution in Andean Patagonian Lakes. PhD thesis, Universidad Nacional del Comahue, ArgentinaGoogle Scholar
  65. Pérez GL, Queimaliños C, Modenutti BE (2002) Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. J Plankton Res 24:591–599CrossRefGoogle Scholar
  66. Pérez GL, Torremorell A, Bustingorry J et al (2010) Optical characteristics of shallow lakes from the Pampa and Patagonia regions of Argentina. Limnologica 40:30–39CrossRefGoogle Scholar
  67. Pick FR (1991) The abundance and composition in relation to light penetration of freshwater picocyanobacteria. Limnol Oceanogr 36:1457–1462CrossRefGoogle Scholar
  68. Pienitz R, Vincent WF (2000) Effect of climate change relative to ozone depletion in subarctic lakes. Nature 404:484–487CrossRefPubMedGoogle Scholar
  69. Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36:8710–8723CrossRefPubMedGoogle Scholar
  70. Porter KG, Feig Y (1980) The use of DAPI for identifying aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  71. Queimaliños C (1993) Efectos del zooplancton sobre la dinámica sucesional del fitoplancton en un ambiente lacustre andino. PhD thesis, Universidad de Buenos Aires, ArgentinaGoogle Scholar
  72. Queimaliños C (2002) The role of phytoplanktonic size fractions in the microbial food webs in two north Patagonian lakes (Argentina). Arch Hydrobiol 28:1236–1240Google Scholar
  73. Queimaliños C, Reissig M, Diéguez MDC et al (2012) Influence of precipitation, landscape and hydrogeomorphic lake features on pelagic allochthonous indicators in two connected ultraoligotrophic lakes of North Patagonia. Sci Tot Environ 427–428:219–228CrossRefGoogle Scholar
  74. Quirós R, Drago E (1999) The environmental state of Argentinean lakes: an overview. Lakes Reserv Res Manag 4:55–64CrossRefGoogle Scholar
  75. Rapacioli (2011) Caracterización hidrológica de la reserva natural urbana Lago Morenito-Laguna Ezquerra. In: Abalerón A, Proyecto de Manejo de Reserva Natural Morenito-Ezquerra. Fundación BarilocheGoogle Scholar
  76. Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  77. Sanders RW, Porter KG (1988) Phagotrophic phytoflagellates. Adv Microb Ecol 10:167–192CrossRefGoogle Scholar
  78. Sathyendranath S, Platt T (2007) Spectral effects in bio-optical control on the ocean system. Oceanologia 49:5–39Google Scholar
  79. Schindler DW, Curtis PJ, Bayley SE, Parker BR, Beaty KG, Stainton MP (1997) Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36:9–28CrossRefGoogle Scholar
  80. Scully NM, Lean DRS (1994) The attenuation of ultraviolet light in temperate lakes. Ergeb Limnol 43:135–144Google Scholar
  81. Seekell DA, Lapierre J-F, Ask J, Bergström A-K, Deininger A, Rodríguez P, Karlsson J (2015) The influence of dissolved organic carbon on primary production in northern lakes. Limnol Oceanogr 60:1276–1285CrossRefGoogle Scholar
  82. Shaw B (2004) Understanding lake data. Univ Wisconsin Pub, USAGoogle Scholar
  83. Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200–800 nm). Appl Opt 20:177–184CrossRefPubMedGoogle Scholar
  84. Stomp M, Huisman J, De Jongh F et al (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104–107CrossRefPubMedGoogle Scholar
  85. Stomp M, Huisman J, Vörös L et al (2007) Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10:290–298CrossRefPubMedGoogle Scholar
  86. Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25:1331–1346CrossRefGoogle Scholar
  87. Takahashi M, Ichimura S, Kishino M, Okami N (1989) Shade and chromatic adaptation of phytoplankton photo-synthesis in a thermally stratified sea. Mar Biol 100:401–409CrossRefGoogle Scholar
  88. Thrane J-E, Hessen DO, Andersen T (2014) The absorption of light in lakes: negative impact of dissolved organic carbon on primary productivity. Ecosystems 17:1040–1052CrossRefGoogle Scholar
  89. Tranvik LJ, Porter KG, Sieburth JM (1989) Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankter. Oecologia 78:473–476CrossRefGoogle Scholar
  90. Unrein F, Massana R, Alonso-Sáez L, Gasol JM (2007) Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol Oceanogr 52:456–469CrossRefGoogle Scholar
  91. Villalba R, Lara A, Masiokas MH et al (2012) Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern annular mode. Nat Geosci 5:793–798CrossRefGoogle Scholar
  92. Vincent WF, Laurion I, Pienitz R (1998) Arctic and Antarctic lakes as optical indicators of global change. Ann Glaciol 27:691–696Google Scholar
  93. Vörös L, Callieri C, Balogh K, Bertoni R (1998) Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369(370):117–125CrossRefGoogle Scholar
  94. Walsh JJ et al (2003) Phytoplankton response to intrusions of slope water on the West Florida Shelf: models and observations. J Geophys Res Oceans 108:21–31Google Scholar
  95. Webster KE, Soranno PA, Cheruvelil KS et al (2008) An empirical evaluation of the nutrient-color paradigm for lakes. Limnol Oceanogr 53:1137–1148CrossRefGoogle Scholar
  96. Wood AM (1985) Adaptation of photosynthetic apparatus of marine ultraphytoplankton to natural light fields. Nature 316:253–255CrossRefGoogle Scholar
  97. Wood AM, Phinney DA, Yentsch CS (1998) Water column transparency and the distribution of spectrally distinct forms of phycoerythrin-containing organisms. Mar Ecol Prog Ser 162:25–31CrossRefGoogle Scholar
  98. Zepp RG, Erickson DJ III, Paul ND, Sulzberger B (2011) Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochem Photobiol Sci 10:261–279CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Laboratorio de Fotobiología, INIBIOMA (Instituto Investigaciones en Biodiversidad y Medio Ambiente)Universidad Nacional del Comahue-CONICETBarilocheArgentina
  2. 2.Laboratorio de Ecología y Fotobiología Acuática, IIB-INTECH (Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús)UNSAM-CONICETChascomúsArgentina
  3. 3.Department of Earth and Environmental SciencesLehigh UniversityBethlehemUSA
  4. 4.Consejo Nacional de Investigación Científica y Técnica (CONICET)Buenos AiresArgentina

Personalised recommendations