Skip to main content

Advertisement

Log in

Spatial distribution of phytoplankton cells in small elongated lakes subject to weak diurnal wind forcing

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The horizontal distribution of phytoplankton in a medium-size canyon type reservoir, forced by weak winds of 3–4 ms−1, is largely driven by the interaction of the large-scale circulation and processes regulating the vertical distribution of algal cells in the water column. These drivers, in turn, are subject to diurnal variations, making our understanding of the horizontal distribution of phytoplankton a challenging task. A three-dimensional physical-–ecological model is used to understand the spatial distribution of algae and the role of diurnal variations in the physical–biological drivers. The model was used to demonstrate that the large-scale circulation induced during the day is more efficient generating patchiness than the circulation existing at night, when convectively driven turbulence homogenizes the upper layers. Different spatial distributions develop for different populations and under different forcing scenarios, characterized in terms of the directionality of wind forcing, wind magnitude and the lags between winds and diel heat fluxes. The time scales needed so that algal biomass in the surface exhibit significant longitudinal gradients—T P —will vary depending on the algal group, and its ability to regulate its vertical position. These scales are shorter for those species that either migrate actively in the water column or exhibit positive buoyancy (Cryptophytes or Positive buoyant algae). In El Gergal, these scales T P are on the order of a few days. Synoptic changes in the meteorological forcing, like the passing of a front, could potentially change the longitudinal distribution of algal biomass if they persist for periods of time longer than T P .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander R, Imberger J (2009) Spatial distribution of motile phytoplankton in a stratified reservoir: the physical controls on patch formation. J Plankton Res 31:101–118

    Article  CAS  Google Scholar 

  • Appt J, Imberger J, Kobus H (2004) Basin-scale motion in stratified Upper Lake Constance. Limnol Oceanogr 4:919–933

    Article  Google Scholar 

  • Belov AP, Giles JD (1997) Dynamical model of buoyant cyanobacteria. Hydrobiologia 349:87–97

    Article  Google Scholar 

  • Bouterfas R, Belkoura M, Dauta A (2006) The effects of irradiance and photoperiod on the growth rate of three freshwater green algae isolated from a eutrophic lake. Limnetica 25:647–656

    Google Scholar 

  • Chan TU, Hamilton DP, Robson BJ, Hodges BR, Dallimore C (2002) Impacts of Hydrological Changes on Phytoplankton Succession in the Swan River, Western Australia. Estuaries 25:1406–1415

    Article  Google Scholar 

  • Cruz-Pizarro L, Basanta A, Escot C, Moreno-Ostos E, George DG (2005) Temporal and spatial variations in the water quality of El Gergal Reservoir, Seville, Spain. Freshwater Forum 23:62–77

    Google Scholar 

  • Devetter M (2011) Seasonal development of planktonic rotifers in Slapy Reservoir (Czech Republic). Biologia 66:662–668

    Article  Google Scholar 

  • Fischer HB, List EG, Koh RCY, Imberger J, Brooks NH (1979) Mixing in Inland and Coastal Waters. Academic Press, New York

    Google Scholar 

  • Gasol JM, Mas J, Pedrós-Alió C, Guerrero R (1990) Ecología microbiana y limnología en la laguna Cisó:1976–1989. Scientia Gerundensis 16:155–178

    Google Scholar 

  • Gasol JM, Garcia-Cantizano J, Massana R, Guerrero R, Pedros-Alio C (1993) Physiological ecology of a metalimnetic Cryptomonas population: relationships to light, sulphide and nutrients. J Plankton Res 13:255–275

    Article  Google Scholar 

  • George DG (1981) Wind-induced water movements in the south basin of Windermere. Freshw Biol 11:37–60

    Article  Google Scholar 

  • George DG (1993) Physical and chemical scales of pattern in freshwater lakes and reservoirs. The Science of the Total Environment 135:1–15

    Article  CAS  Google Scholar 

  • George DG, Edwards RW (1976) The effect of wind on the distribution of chlorophyll a and crustacean plankton in a shallow eutrophic reservoir. J Appl Ecol 13:667–690

    Article  CAS  Google Scholar 

  • Grover JP, Sterner RW, Robinson JL (1999) Algal growth in warm temperate reservoirs: nutrient-dependent kinetics of individual taxa and seasonal patterns of dominance. Archiv für Hydrobiologie 145:1–23

    CAS  Google Scholar 

  • Gómez-Giraldo A, Imberger J, Antenucci JP (2006) Spatial structure of the dominant basin-scale internal waves in Lake Kinneret. Limnol Oceanogr 51:229–246

    Article  Google Scholar 

  • González-Castro JA, Muste M (2007) Framework for estimating uncertainty of ADCP Measurements from a moving boat by standardized uncertainty analysis. J Hydraul Eng 133:1390–1410

    Article  Google Scholar 

  • Hillmer I, Imberger J (2007) Estimating in situ phytoplankton growth rates with a Lagrangian sampling strategy. Methods Limnol Oceanogr 5:495–509

    Article  CAS  Google Scholar 

  • Hillmer I, van Reenen P, Imberger J, Zohary T (2008) Phytoplankton patchiness and their role in the modelled productivity of a large, seasonally stratified lake. Ecol Model 218:49–59

    Article  Google Scholar 

  • Hipsey MR, Romero J, Antenucci J, Hamilton D, (2003), computational aquatic ecosystem dynamics model (CAEDYM), v2.0 science manual. Centre for water research, University of Western Australia

  • Hipsey MR, Antenucci JP, Brookes JD, Burch MD, Regel RH, Linden L (2004) A three dimensional model of Cryptosporidium dynamics in lakes and reservoirs: a new tool for risk management. Intl J River Basin Manag 2:1–17

    Article  Google Scholar 

  • Hodges B, Dallimore C (2006) Estuary, Lake and Coastal Ocean Model: ELCOM v2.2 science manual. Technical report, centre for water research, University of Western Australia

  • Hodges BR, Imberger J, Saggio A, Winters KB (2000) Modeling basin-scale internal waves in a stratified lake. Limnol Oceanogr 45:1603–1620

    Article  Google Scholar 

  • Hoyer AB, Moreno-Ostos E, Vidal J, Basanta A, Rueda FJ (2009) The influence of external perturbations on the functional composition of phytoplankton community in a Mediterranean reservoir. Hydrobiologia 636:49–64. doi:10.1007/s10750-009-9934-2

    Article  Google Scholar 

  • Huisman J, Van Oostveen P, Weissing FJ (1999) Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms. Limnol Oceanogr 44:1781–1787

    Article  Google Scholar 

  • Huisman J, Arraya′s M, Ebert U, Sommeijer B (2002) How do sinking phytoplankton species manage to persist? Am Nat 159:245–254

    Article  PubMed  Google Scholar 

  • Humphries SE, Lyne VD (1988) Cyanophyte blooms: the role of cell buoyancy. Limnol Oceanogr 33:79–91

    Article  Google Scholar 

  • Hutchinson PA, Webster IT (1994) On the distribution of blue-green algae in lakes: wind-tunnel tank experiments. Limnol Oceanogr 39:374–382

    Article  Google Scholar 

  • Ibelings BW, Mur LR, Walsby AE (1991) Diurnal changes in buoyancy and vertical distribution in populations of Microcystis in 2 shallow lakes. J Plankton Res 13:419–436

    Article  Google Scholar 

  • Jin KR, Hamrick JH, Tisdale T (2000) Application of three-dimensional hydrodynamic model for Lake Okeechobee. J Hydraul Eng 126:758–771

    Article  Google Scholar 

  • Jorgensen SE (1979) Handbook of environmental data and ecological parameters. International Society Ecological Modelling, Copenhagen

    Google Scholar 

  • Kehayias G, Chalkia E, Chalkia S, Nistikakis G, Zacharias I, Zotos A (2008) Zooplankton dynamics in the upstream part of Stratos reservoir (Greece). Biologia 63:699–710

    Article  Google Scholar 

  • Kimmel BL, Lind OT, Paulson LJ (1990) Reservoir Primary Production. In: Thornton KW, Kimmel BL, Payne FE (eds.), Reservoir limnology. Ecological perspectives, John Wiley & Sons, Inc., NY

  • Laval B, Hodges BR, Imberger J (2003) Numerical diffusion in 3D, hydrostatic, z-level lake models. J Hydraul Eng 129:215–224

    Article  Google Scholar 

  • Lloyd M (1967) Mean Crowding. J Anim Ecol 36:1–30

    Article  Google Scholar 

  • Moreno-Ostos E, Cruz-Pizarro L, Basanta A, George DG (2008) The spatial distribution of different phytoplankton functional groups in a Mediterranean reservoir. Aquat Ecol 42:115–128

    Article  CAS  Google Scholar 

  • Morillo S, Imberger J, Antenucci JP, Woods PF (2008) Influence of wind and lake morphometry on the interaction between two rivers entering a stratified lake. J Hydraul Eng 134:1579–1589. doi:10.1061/(ASCE)0733-9429(2008)134:11(1579)

    Article  Google Scholar 

  • Olivier RL, Ganf GG (2002) Freshwaters blooms. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 149–183. ISBN 0-7923-47735-8

  • Perez-Losada J, Roget E, Casamitjana X (2003) Evidence of high vertical wave-number behaviour in a continuously stratified reservoir. J. Hydraul Eng 129:734–737

    Article  Google Scholar 

  • Platt T, Denman K (1980) Patchiness in phytoplankton distribution. In: Morris I (ed) The Physiological Ecology of Phytoplankton. Blackwell Scientific Publications, Oxford, pp 413–431

    Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Reynolds CS (1997) Vegetation Processes in the Pelagic: a Model for Ecosystem Theory. Ecology Institute, Oldenhorf Luhe

    Google Scholar 

  • Robson BJ, Hamilton DP (2004) Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary, Western Australia. Ecol Model 174:203–222

    Article  CAS  Google Scholar 

  • Romero JR, Antenucci JP, Imberger J (2004) One- and threedimensional biogeochemical simulations of two differing reservoirs. Ecol Model 174:143–160

    Article  CAS  Google Scholar 

  • Rueda FJ, Schladow SG (2003) The internal dynamics of a shallow polymictic lake. Part II: numerical simulations. ASCE. J Hydraul Eng 129(2):92–101

    Article  Google Scholar 

  • Rueda FJ, Vidal J, Schladow SG (2009) Modeling the effect of size reduction on the stratification of a large wind-driven lake using an uncertainty based approach. Water Resour Res 45:W03411. doi:10.1029/2008WR006988

    Article  Google Scholar 

  • Schimmelpfennig S, Kirillin G, Engelhardt C, Nützmann G (2012) ffects of wind-driven circulation on river intrusion in LakeTegel: modelling study with projection on transport of pollutants. Environ Fluid Mech 12:321–339. doi:10.1007/s10652-012-9236-5

    Article  Google Scholar 

  • Serra T, Vidal J, Colomer J, Casamitjana X, Soler M (2007) The role of surface vertical mixing in phytoplankton distribution in a stratified reservoir. Limnol Oceanogr 52:620–634

    Article  Google Scholar 

  • Spillman CM, Imberger J, Hamilton DP, Hipsey MR, Romero JR (2007) Modelling the effects of Po River discharge, internal nutrient cycling and hydrodynamics on biogeochemistry of the Northern Adriatic Sea. J Mar Syst 68:167–200

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen der Internationalen Vereinigung für Limnologie 9:1–38

    Google Scholar 

  • Vašek M, Kubečka Matěna J, Seda J (2006) Distribution and Diet of 0+ Fish within a Canyon-Shaped European reservoir in late summer. Internat Rev Hydrobiol 91:178–194

    Article  Google Scholar 

  • Verhagen JHG (1994) Modeling phytoplankton patchiness under the influence of wind-driven currents in lakes. Limnol Oceanogr 39:1551–1565

    Article  Google Scholar 

  • Vidal J, Casamitjana X (2008) Forced resonant oscillations as a response to periodic winds in a stratified reservoir. J Hydraul Eng 134:416. doi:10.1061/(ASCE)0733-9429(2008)134:4(416)

    Article  Google Scholar 

  • Vidal J, Rueda FJ, Casamitjana X (2007) The seasonal evolution of the internal wave field in a deep warm-monomictic reservoir. Limnol Oceanogr 52:2656–2667

    Article  Google Scholar 

  • Vidal J, Moreno-Ostos E, Escot C, Rueda FJ (2010) The effects of diel changes in circulation and mixing on the longitudinal distribution of phytoplankton in a canyon-shaped Mediterranean reservoir. Freshw Biol 55:1945–1957

    Article  Google Scholar 

  • Vidal J, Marce R, Serra T, Colomer J, Rueda F, Casamitjana X (2011) Localized algal blooms induced by river inflows in a canyon type reservoir. Aquat Sci 74:315–327. doi:10.1007/s00027-011-0223-6

    Article  Google Scholar 

  • Visser PM, Passarge J, Mur LR (1997) Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia 349:99–109

    Article  Google Scholar 

  • Visser PM, Ibelings BW, Mur LR, Walsby AE (2005) The ecophysiology of the harmful cyanobacteria Microcystis. In: Huisman J, Matthijs HCP, PM Visser (eds) Harmful cyanobacteria Springer, Dordrecht, pp 109–142: ISBN 1-4020-3009-6

  • Wallace BB, Hamilton DP (2000) Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa. J Plankton Res 22:1127–1138

    Article  Google Scholar 

  • Walsby AE, Hayes PK, Boje R (1995) The gas vesicles buoyancy and vertical distribution of cyanobacteria in the Baltic Sea. Eur J Phycol 30:1434–1446

    Article  Google Scholar 

  • Webster IT (1990) Effect of wind on the distribution of phytoplankton cells in lakes. Limnol Oceanogr 35:989–1001

    Article  Google Scholar 

  • Webster IT, Hutchinson PA (1994) Effect of wind on the distribution of phytoplankton cells in lakes revisited. Limnol Oceanogr 39:365–373

    Article  Google Scholar 

  • Wei H, Sun J, Moll A, Zhao L (2004) Phytoplankton dynamics in the Bohai Sea—observations and modeling. J Mar Syst 44:233–251

    Article  Google Scholar 

Download references

Acknowledgments

We thank Maria Perez-Ullen, Miguel Vargas-Gallardo and Manuel Moreno-Payan. Logistical support was provided by the Seville water supply company (EMASESA). The research was funded by Ministerio de Ciencia e Innovacion (Projects CGL2005-04/070 HID and CGL2008-06101). Thanks to the Centre for Water Research (CWR, University of Western Australia) and its director, Jörg Imberger, for making the Estuary and Lake Computer Model (ELCOM-CAEDYM) available for use in this project. This work has been financially supported in part by both MICINN and the Fulbright Program through Grant #2008-0909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, J., Rigosi, A., Hoyer, A. et al. Spatial distribution of phytoplankton cells in small elongated lakes subject to weak diurnal wind forcing. Aquat Sci 76, 83–99 (2014). https://doi.org/10.1007/s00027-013-0316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-013-0316-5

Keywords

Navigation