An Investigation on the Conjecture of Chen and Yi

A Correction to this article is available

This article has been updated

Abstract

In the paper, we have investigated on a conjecture posed by Chen and Yi (Results Math 63:557–565, 2013) concerning the uniqueness problem of meromorphic functions f sharing three distinct values with their difference \({\mathcal {L}}_c(f) \). We have proved the conjecture for finite ordered meromorphic functions. Some examples have been exhibited in the paper to show that the main result is true also for the meromorphic function of infinite order, but we are unable to prove our results for the function of infinite order, and hence we conjecture it. The main results in the paper also generalized a result of Zhang and Liao (Sci China Math 57(10):2143–2152, 2014). This research also shows that when a meromorphi function f satisfies a certain relation of the type \( {\mathcal {L}}_c(f)\equiv f \), then it can be found the class of all such functions.

This is a preview of subscription content, access via your institution.

Change history

  • 16 July 2019

    In the original publication, Examples 1.9 and 1.12 are exhibited inappropriately for infinite-order entire functions.

References

  1. 1.

    Bergweiler, W., Langley, J.K.: Zeros of difference of meromorphic functions. Math. Proc. Camb. Philos. Soc. 142, 133–147 (2007)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Brück, R.: On entire functions which share one value CM with their derivative. Results Math. 30, 21–24 (1996)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Chen, Z.X.: Some results on difference Riccati equations. Acta Math. Sin. Eng. Ser. 27, 1091–1100 (2011)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Chen, Z.X., Yi, H.X.: On sharing values of meromorphic functions and their differences. Results Math. 63, 557–565 (2013)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Chiang, Y.M., Feng, S.J.: On the Nevanlinna characteristic of \( f(z+c) \) and difference equation in the complex plane. Ramanujan J. 16, 105–129 (2008)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Gundersen, G.: Meromorphic function share four values. Trans. Am. Math. Soc. 277, 545–567 (1983)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Gundersen, G.: Correction to meromorphic functions that share four values. Trans. Am. Math. Soc. 304, 847–850 (1987)

    MATH  Google Scholar 

  8. 8.

    Halburd, R.G., Korhonen, R.J.: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31, 463–478 (2006)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Halburd, R.G., Korhonen, R.J.: Meromorphic solution of difference equations, integrability and the discrete. J. Phys. A 40, 1–38 (2007)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Hayman, W.K.: Meromorphic Functions. Clarendon Press, Oxford (1964)

    Google Scholar 

  11. 11.

    Heittokangas, J., Korhonen, R., Laine, I., et al.: Value sharing results for shifts of meromorphic functions, and sufficient condition for periodicity. J. Math. Anal. Appl. 355, 352–363 (2009)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Liu, K.: Zeros of difference polynomials of meromorphic functions. Results Math. 57, 365–376 (2010)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Liu, K., Yang, L.Z.: Value distribution of the difference operator. Arch. Math. 92, 270–278 (2009)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Lü, F., Lü, W.: Meromorphic functions sharing three values with their difference operators. Comput. Methods Funct. Theory. (2017). https://doi.org/10.1007/s40315-016-0188-5

  15. 15.

    Mohonko, A.Z.: The Nevanlinna characteristics of certain meromorphic functions. Teor. Funktsii Funktsional. Anal. i Prilozhen 14, 83–87 (1971). (Russian)

    MathSciNet  Google Scholar 

  16. 16.

    Mues, E.: Meromorphic functions sharing four values. Complex Var. Theory Appl. 12, 169–179 (1989)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Nevanlinna, R.: Le Théoréme de Picard-Borel et la Théorie des Fonctions Méromorphes. Gauthier-Villars, Paris (1929)

    Google Scholar 

  18. 18.

    Rubel, L., Yang, C.C.: Values shared by an entire function and its derivative. In: Lecture Notes in Mathematics, vol. 599, pp. 101–103. Springer, Berlin (1977)

  19. 19.

    Valiron, G.: Sur la dérivée des fonctions algébroïdes. Bull. Soc. Math. France 59, 17–39 (1931)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Yang, C.C., Yi, H.X.: Uniqueness Theory of Meromorphic Functions. Kluwer Academic Publishing Group, Dordrecht (2003)

    Google Scholar 

  21. 21.

    Yang, C.C., Yi, H.X.: Uniqueness Theory of Meromorphic Functions. Science Press, Beijing (2006)

    Google Scholar 

  22. 22.

    Yang, L.: Value Distribution Theory. Springer, Berlin (1993)

    Google Scholar 

  23. 23.

    Zhang, J., Liao, L.W.: Entire function sharing some values with their difference operators. Sci. China Math. 57(10), 2143–2152 (2014)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Molla Basir Ahamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahamed, M.B. An Investigation on the Conjecture of Chen and Yi. Results Math 74, 122 (2019). https://doi.org/10.1007/s00025-019-1045-4

Download citation

Keywords

  • Meromorphic function
  • uniqueness
  • difference
  • shared values
  • finite order

Mathematics Subject Classification

  • Primary 30D35